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ABSTRACT 

The uniform spanning tree (UST) and the loop-erased random walk 

(LERW) are strongly related probabilistic processes. We consider the 

limits of these models on a fine grid in the plane, as the mesh goes to 
zero. Although the existence of scaling limits is still unproven, subse- 
quential scaling limits can be defined in various ways, and do exist. We 

establish some basic a.s. properties of these subsequential scaling limits 
in the plane. It is proved that  any LERW subsequential scaling limit is a 
simple path, and that  the trunk of any UST subsequential scaling limit 

is a topological tree, which is dense in the plane. 

The scaling limits of these processes are conjectured to be conformally 
invariant in dimension 2. We make a precise statement of the conformal 

invariance conjecture for the LERW, and show that  this conjecture implies 
an explicit construction of the scaling limit, as follows. Consider the 

LSwner differential equation 

(Of (~(t) + z Of 
ot - z f ( t )  - z O z '  

with boundary values f(z,O) = z, in the range z E U = {w E C: Iwl < 1}, 
t ~< 0. We choose ~(t) := B( -2 t ) ,  where B(t) is Brownian motion on 
OU start ing at a random-uniform point in 0U. Assuming the conformal 
invariance of the LERW scaling limit in the plane, we prove tha t  the 

scaling limit of LERW from 0 to 0U has the same law as tha t  of the 

path f(r  t) (where f (z ,  t) is extended continuously to 0U x ( - c r  01). 
We believe tha t  a variation of this process gives the scaling limit of the 

boundary of macroscopic critical percolation clusters. 
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1. I n t r o d u c t i o n  

SCALING LIMITS OF RANDOM WALKS 223 

GENERAL REMARKS ABOUT SCALING LIMITS. It is often the case that  grid- 

based probabilistic models should be considered as a mere substitute, or simplifi- 

cation, of a continuous process. There are definite advantages for working in the 

discrete setting, where unpleasant technicalities can frequently be avoided, sim- 

ulations are possible, and the setup is easier to comprehend. On the other hand, 

one is often required to pay some price for the simplification. When we adopt 

the grid-based world, we sacrifice rotational or conformal symmetries which the 

continuous model may enjoy, and often have to accept some arbitrariness in the 

formulation of the model. There are also numerous examples where the continu- 

ous process is easier to analyze than the discrete process, and in such situations 

the continuous may be a useful simplification of the discrete. 

Understanding the connections between grid-based models and continuous pro- 

cesses is a project of fundamental importance, and so far has only limited success. 

As mathematicians, we should not content ourselves with the vague notion that 

the discrete and continuous models behave "essentially the same", but strive to 

make the relations concrete and precise. 

One reasonable way to define a continuous process is by taking a scal ing 

l imi t  of a grid process. This means making sense of the limit of a sequence of 

grid processes on finer and finer grids. Recently, Aizenman [Aiz] has proposed a 

definition for the scaling limit of percolation, and we shall propose a somewhat 

different definition [Sch]. 

Although, in general, the understanding of the connections between grid-based 

models and continuous models is lacking, there have been some successes. The 

classical and archetypical example is the relation between simple random walk 

(SRW) and Brownian motion, which is well studied and quite well understood. 

See, for example, the discussion of Donsker's Theorem in [Dur91]. We also men- 

tion that  recently, TSth and Werner [TW98] have described the scaling limit of 

a certain self-repelling walk on Z. 

The present paper deals with the scaling limits of two very closely related 

processes, the loop-erased random walk (LERW) and the uniform spanning tree 

(UST). While these processes are interesting also in dimensions 3 and higher, 

we restrict attention to two dimensions. In the plane, the scaling limits are 

conjectured to possess conformal invariance (precise statements appear below), 

and this can serve as one justification for the special interest in dimension 2. The 

recent preprint by Aizenman, Burchard, Newman and Wilson [ABNW] discusses 

scaling limits of random tree processes in two dimensions, including the UST. 
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The present work answers some of the questions left open in [ABNW]. 

The most fundamental task in studying a scaling limit process is to set up a 

conceptual foundation for the scaling limit. This means answering the following 

two questions: what kind of object is the scaling limit, and what does it mean to 

be the scaling limit? For the first question, there's often more than one "right" 

answer. For example, the scaling limit of (two-sided) simple random walk in 

Z is usually defined as a probability measure on C(~),  the space of continuous, 

real-valued functions on R, but it could also be defined as a measure on the space 

of closed subsets of ~ • R, with an appropriately chosen metric. There's also a 

"wrong" answer here. It is not a good idea to consider the scaling limit of SRW 

as a probability measure on ] ~ ,  though this might seem at first as more natural. 

After the conceptual framework is fixed, the next natural question is the exis- 

tence of the scaling limit. Unfortunately, we cannot report on any progress here. 

There is every reason to believe that UST and LERW have scaling limits, but a 

proof is still lacking. However, in the setup we propose below, the existence of 

subsequential scaling limits is almost a triviality: for every sequence of positive 

5j tending to 0, there is a subsequence ~j~ such that the UST and the LERW 

on the grids 5j~Z 2 do converge to a limit as n --~ oo. Such a limit is called a 

subsequential scaling limit of the model, and is a probability measure on some 

space. 

All the above discussion concerns foundational issues, which are important. 

But it is not less important to prove properties of the (subsequential) scaling 

limit. 1 In this paper, we prove several almost sure properties of the UST and 

LERW subsequential scaling limit. We now describe these models and explain 

the results. 

THE L E R W  MODEL AND ITS SCALING LIMIT. Consider some set of vertices 

K ~ 0, in a recurrent graph G, and a vertex v0. The LERW from v0 to K in G is 

obtained by running simple random walk (SRW) from v0, erasing loops as they 

are created, and stopping when K is hit. Here's a more precise description. Let 

RW be simple random walk starting at RW(0) = v0 and stopped at the first time 

T such that  RW(T) E K.  Its loop-erasure, [E = IERw, is defined inductively as 

follows: LE(0) := v0, and LE(j + 1) = RW(t + 1) if t is the last time less than T 

such that  RW(t) = LE(j). The walk LE stops when it gets to RW(T) E K.  Note 

Sometimes, this can be done without even defining the scaling limit. For 
example, the Russo-Seymour-Welsh Theorem [Rus78], [SW78] in percolation 
theory implies properties of any reasonably defined percolation scaling limit. 
Similarly, Benjamini's paper [Ben] does not explicitly discuss the scaling limit 
of UST, but has implication to the UST scaling limit. 
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that  this LERW is a random simple path  from vo to K.  

On a transient graph, it may happen that  RW does not hit K.  However, one 

can discuss the loop-erasure of the walk continued indefinitely, since it a.s. visits 

any vertex only finitely many times. 

LERW o n  Z d was studied extensively by Greg Lawler (see the survey paper  

[Law] and the references therein), who considered LERW as a simpler substi- 

tute for the self-avoiding random walk (see the survey [Sla94]), which is harder 

to analyze. However, we believe that  the LERW model is just as interesting 

mathematically, because of its strong ties with SRW and UST. 

For compactness 's  sake, in the following we consider the plane C = R 2 as a 

subset of the two-sphere, •2 = C U {c~}, which is the one point compactification 

of the plane, and work with the spherical metric dsp on S 2. Let D be a domain 

(nonempty open connected set) in the plane C = ~2. We consider a graph 

G = G(D, ~), which is an approximation of the domain D in the square grid 5Z 2 

of mesh 6. The i n t e r i o r  ve r t i ces ,  VI(G), of G are the vertices of 5Z 2 which are 

in D, and the b o u n d a r y  ver t i ces ,  Vo(G), are the intersections of edges of 5Z 2 

with OD. (The precise definition of G appears in Section 2.) Suppose that  each 

component  of OD has positive diameter. Let a E D, and let LE = LEa,D,5 be 

LERW from a vertex a '  E 5Z 2 M D closest to a to Vo(G) in G. 

To make sense of the concept of the sca l ing  l imi t  of LERW in D, we think of 

LE as a random set in D. Recall that  the Hausdorff distance dn(X, Y) between 

two closed nonempty sets X and Y in a compact metric space Z is the least t >~ 0 

such that  each point x E X is within distance t from Y and each point y E Y is 

within distance t from X; that  is, 

i n f / t > ~ 0 : X c  U B(x,t), Y c  U B(y,t)l. dn(X,Y) 
k x E X  y C Y  J 

On the collection 7-/(D) of closed subsets of D, we use the metric dn(o) (X, Y) := 

dn(X U OD, Y U OD), and 7-/(D) is compact with this metric. Then LE n D is a 

random element in 7-/(D), and its distribution #5 = #~,D is a probability measure 

on 7{(D). Because the space of Borel probability measures on a compact  space 

is compact  in the weak topology, 2 there is a sequence 5j -4 0 such that  the weak 

limit #0 := limj_+o~ #sj exists. Such a measure #0 will be called a s u b s e q u e n t i a l  

sca l ing  l imi t  measure of LERW from a to OD. If it0 = lims-+0 #5, then we say 

that  #0 is the sca l ing  l imi t  measure of LERW from a to OD. 
Similarly, we may consider the scaling limit of LERW between two distinct 

2 We review the notion of weak convergence in Section 2. 
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points a, b E S 2, as follows. For 6 > 0, we take LE to be the loop-erasure of 

SRW on 6Z 2 starting from a vertex of 6Z 2 within distance 25 of a and stopped 

when it first hits a vertex within distance 26 of b. Since LE is a.s. compact, its 

distribution is an element of the Hausdorff space 7-/($2), and there exists a Borel 

probability measure on ~/($2), which is a subsequential scaling limit measure of 

the law of LE. 

THEOREM 1.1: Let D be a domain in S 2 such that each connected component 

of OD has positive diameter, and let a E D. Then every subsequential scaling 

limit measure of L E R W  from a to OD is supported on simple paths. 

Similarly, if  a, b are distinct points in S 2, then every subsequential scaling limit 

of the L E R W  from a to b in 6Z 2 is supported on simple paths. 

Saying that the measure is supported on simple paths means that  there's a 

collection of simple paths whose complement has zero measure. 

T H E  C O N F O R M A L  INVARIANCE C O N J E C T U R E  FOR LERW. Consider two do- 

mains D, D t C S 2. Every homeomorphism f:  D --+ D ~ induces a homeomorphism 

7-/(D) ~ 7-/(D'). Consequently, if # is a probability measure on 7-/(D), there is 

an induced probability measure f . #  on 7-/(D'). 

CONJECTURE 1.2: Let D C C be a simply connected domain in C, and let 

a E D. Then the scaling limit of L E R W  from a to OD exists. Moreover, suppose 

that f: D ~ D' is a conformal homeomorphism onto a domain D ~ C C. Then 

f,#a,D = #l(a),O', where #a,D is the scaling limit measure of L E R W  from a to 

OD, and #f(~),D, is the scaling limit measure of L E R W  from f(a)  to OD'. 

Although conformal invariance conjectures have been "floating in the air" in the 

physics literature for quite some time now, we believe that this precise statement 

has not yet appeared explicitly. Support for this conjecture comes from simu- 

lations which we have performed, and from the work of Rick Kenyon [Ken98a], 

[Ken98b], [Ken99]. 

We prove that  Conjecture 1.2 implies an explicit description of the LERW scal- 

ing limit in terms of solutions of Lhwner's differential equation with a Brownian 

motion parameter. We now give a brief explanation of this. 

Let U := {z E C: [z[ < 1}, the unit disk. If 7 is a compact simple path in 

U - {0}, such that 7 N 0U is an endpoint of 7, then there is a unique conformal 

homeomorphism f~: U --+ U - 7  such that  f~(0) = 0 and f.~(0) > 0 (that is, 

f~(0) is real and positive). Moreover, if ~ is another such path, and ~ D 7, then 
I 0 , f~( ) > f�88 Now suppose tha t /3  is a compact simple path in U such that  

0gJ N fl is an endpoint of fl and 0 is the other endpoint of fl, as in Figure 1.1. 
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For each point q E fl - {0}, let flq be the arc of/~ extending from q to 0U, and 

let h(q) := log f~q (0). (If q is the endpoint of ~ on 0U, then fBq (z) = z.) It 

turns out that h is a homeomorphism from ~ - {0} onto (-c~,  0]. We let q(t) 
denote the inverse map q: ( -oc,0]  -+/~, and set f ( z , t )  = ft(z) := f~,m(z).  In 
this setting, Lhwner's Slit Mapping Theorem [Lhw23] (see also [Pom66]) states 

that ft(z) is the solution of Lhwner's equation 

0 z ' " z "  r + z (1.1) --~ft(z) = It( ) ~ - ~ - - z '  Vz e U,Vt e (-oo,0] ,  

where (: ( -oc ,  0] --* 0U is some continuous function. In fact, if(t) is defined by 

the equation 

f(r t) = q(t). 

(The left hand side makes sense, since there is a unique continuous extension of 

ft  to 0U.) Note that f also satisfies 

(1.2) f ( z ,  o) = z, Vz e v .  

Figure 1.1. 

THEOREM 1.3 (The differential equation for the LERW scaling limit): Assume 

Conjecture 1.2. Let B(t), t >1 0 be Brownian motion on OU starting from a 
uniform-random point on OU. Let f (z ,  t) be the solution of (1.1) and (1.2), with 
r := B(-2t ) .  Set 

(1.3) a(t) = f(~(t),t) ,  t <~ O. 
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Then {0} td a ( ( - cc ,  0)) has the same distribution as the scaling limit of LERW 
from 0 to OU. 

The Srownian motion B(t) in the theorem can be defined as B(t) :-- exp(iB(t)), 

where B(t) is ordinary Brownian motion on ~, starting at a uniform-random point 

in [0, 27r). 

Remark 1.4: It is not a pr iori  clear that a(t) is well defined and that a(t) is a 

simple path. For example, we do not know how to prove that ft extends continu- 

ously to U without assuming Conjecture 1.2. The proof of Theorem 1.3 starts by 

considering the scaling limit of LERW, which is a simple path by Theorem 1.1. 

It is then shown that the corresponding ~ has the same distribution as B(-2t).  

Remark 1.5: Although (1.1) may look like a PDE, it can in fact be presented 

as an ODE. Set (~(z,t,s) := fs-l(ft(z)) when t ~< s ~< 0. Then 

r  0) = A(z ) ,  

(1.4) (I)(z, t, t) = z. 

(1.5) 

Therefore, 
s c It, 0]. 

It is immediate to see that ft satisfies (1.1) iff �9 = O(z, t, s) satisfies 

0 r  + r 

ft(z) can be obtained by solving the ODE (1.5) with t fixed and 

Note that (~ + ~)/(~ - (I)) has positive real part when (I) E U and ( E 0U. 

Therefore, (1.5) implies that IO(z,t, s)] is monotone decreasing as a function of 

s. From this it can be deduced that there is a unique solution to the system (1.4) 

and (1.5) in the interval s E It, 0]. 

Obviously, Theorem 1.3 together with Conjecture 1.2 describe the LERW 

scaling limit in any simply connected domain D C C, since such domains are 

conformally equivalent to U. 

It would be interesting to extract properties of the LERW scaling limit from 

Theorem 1.3. 

At the heart of the proof of Theorem 1.3 lies the following simple combinatorial 

fact about LERW. Conditioned on a subarc/7' of the LERW ~ from 0 to OD, 
which extends from some point q C ~ to OD, the distribution of f l - f i '  is the same 

as that of LERW from 0 to O(D -/7'), conditioned to hit q. (See Lemma 4.3.) 

When we take the scaling limit of this property, and apply the conformal map 
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from O(D - ~)  to IIJ, this translates into the Markov property and stationarity 

of the associated Lhwner parameter ~. 

THE UNIFORM SPANNING TREE AND ITS SCALING LIMIT. Shortly, a defini- 

tion of the uniform spanning tree (UST) on Z 2 will be given. The UST is a 

statistical-physics model. It lies in the boundary of the two-parameter family 

of random-cluster measures, which includes Bernoulli percolation and the Ising 

model [Hs The UST is very interesting mathematically, partly because it 

is closely related to the theory of resistor networks, potential theory, random 

walks, LERW, and in dimension 2, also domino tilings. The paper [BLPS98] 

gives a comprehensive study of uniform spanning trees (and forests), following 

earlier pioneering work [Ald90], [Bro89], [Pem91], [BP93], [H~g95]. A survey of 

current UST theory can be found in [Lyo98]. 

Let G be a connected graph. A fores t  is a subgraph of G that has no cycles. A 

t r e e  is a connected forest. A subgraph of G is sp an n in g  if it contains V(G), the 

set of vertices of G. We will be concerned with spanning trees. Since a spanning 

tree is determined by its edges, we often don't make a distinction between the 

spanning tree T and its set of edges E(T). 

If G is finite, a uniform spanning tree (UST) in G is a random spanning tree 

T C G, selected according to the uniform measure. (That is, PIT = T1] = 

P[T = T2], whenever T1 and T2 are spanning trees of G.) 

It turns out that UST's are very closely related to LERW's. If a, b E V(G), 

then the (unique) path in the UST joining a and b has the same law as the LERW 

from a to b in G. (This, in particular, implies that the LERW from a to b has 

the same law as the LERW from b to a.) Wilson's algorithm [Wi196], which will 

be described in Section 2, is a very useful method to build the UST by running 

LERW's. 

R. Lyons proposed (see [Pem91]) to extend the notion of UST to infinite graphs. 

Let G be an infinite connected graph. Consider a nested sequence of connected 

finite sugraphs G1 C G2 C --. C G such that G = U jG j -  For each j ,  the 

uniform spanning tree measure ttj on Gj may be considered as a measure on 

2 E(G), the a-field of subsets of the edges of G, generated by the sets of the form 

{F  C E(G): e C F} ,  e E E(G). Using monotonicity properties, it can be shown 

that the weak limit tt := l i m j ~  ttj exists, and does not depend on the sequence 

{Gj}. It is called the free uniform spanning forest measure (FSF) on G. (The 

reason for the word 'free' is that there's another natural kind of limit, the wired 

uniform spanning forest (WSF). On Z d, these two measures agree.) R. Pemantle 

[Pem91] proved that if d ~< 4, the FSF measure on Z d is supported on spanning 
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trees (that is, if T is random and its law is the FSF measure, then T is a.s. a 

spanning tree), while if d ~> 5, the measure is supported on disconnected spanning 

forests. 

Let us now restrict attention to the case G = Z 2. Since it is supported on 

spanning trees, we call the FSF measure on Z 2 the u n i f o r m  s p a n n i n g  t r e e  

(UST) on Z 2. I. Benjamini [Ben] and R. Kenyon [Ken99] studied asymptotic 

properties of the UST on a rescaled grid 5Z ~, with ~ small, but did not a t tempt  

to define the scaling limit. Aizenman, Burchard, Newman and Wilson [ABNW] 

defined the scaling limit of UST (and other tree processes) in Z 2, and studied 

some of their properties. 

We present a different definition for the scaling limit of the UST. Let ~ > 0. 

Again, we think of (iZ 2 as a subset of the sphere S 2 ---- ~2 t..J {OO}. Let T~ be 

the UST on ~Z 2, union with the point at infinity. Then T~ can be thought of 

as a random compact subset of S 2. However, it is fruitless to consider the weak 

limit as ~ --4 0 of the law of T~ as a measure on the Hausdorff space 7-/($2), since 

the limit measure is an atomic measure supported on the single point in 7-/($2), 

which is all of S 2. 

Given two points a, b E T~, let Wa,b be the unique path in T~ with endpoints 

a and b, allowing for the possibility Wa,b = (a}, when a = b. (It was proved 

by R. Pemantle that  a.s. the UST T in Z 2 has a single end; that  is, there is 

a unique infinite ray in T starting at 0. This implies that  indeed Wa,b exists 

and is unique, not only for T, but also for T U {co}.) Let ~ = ~ ( T ~ )  be the 

collection of all triplets, (a, b, Wa,b), where a, b E T~. Then T~ is a closed subset 

of S 2 x S 2 x 7-/($2), and the law #~ of ~ is a probability measure on the compact 

space 7-/(S 2 x S 2 x 7-/($2)). By compactness, there is a subsequential weak limit 

# of #~ as tf -+ 0, which is a probability measure on 7/(S 2 x $2 x 7-/($2)). We 

call # a s u b s e q u e n t i a l  U S T  scal ing l imi t  in Z 2 . If # :-- lim~_~0 #~, as a weak 

limit, then # is the U S T  scal ing l imit .  

We prove 

THEOREM 1.6: Let # be a subsequential UST scaling limit in Z 2, and let ~ �9 

qr~(S 2 X S 2 X qf~(S2)) be a random variable with law #. Then the following holds 

a . s .  

(i) For every (a, b) �9 S 2 • S 2, there is some w �9 7-/(S 2) such that (a, b, w) �9 T. 

For almost every (a,b) �9 S 2 • S 2, this w is unique. 

(ii) For every (a, b, w) �9 ~, i f  a r b, then w is a simple path, that is, homet>- 

morphic to [0, 1]. I f  a = b, then w is a single point or homeomorphic to a 

circle. For almost every a �9 S 2, the only w such that (a,a,w) �9 �9 is {a}. 
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(iii) The t r u n k ,  

trunk := U (w - {a,b}), 
(a,b,w)ET 

is a topological tree (in the sense of Definition 10.1), which is dense in S 2. 

(iv) For each x E trunk, there are at most three connected components of 

t r u n k  - { x } .  

This theorem basically answers all the topological questions about the UST 

scaling limit on Z 2. It is sharp, in the sense that all the "almost every" clauses 

cannot be replaced by "every". Benjamini [Ben] proved a result which is closely 

related to item (iv) of the theorem, and [ABNW] proved (in a different language) 

that  (iv) holds with "three" replaced by some unspecified constant. 

The dua l  of a spanning tree T C Z 2 is the spanning subgraph of the dual 

graph (1/2, 1/2) + Z 2 containing all edges that do not intersect edges in T. It 

turns out that  duality is measure preserving from the UST on Z 2 to the UST 

on the dual grid. The key to the proof of Theorem 1.6 is the statement that  the 

trunk is disjoint from the trunk of the dual UST scaling limit. 

Let us stress that  Theorem 1.6 is not contingent on Conjecture 1.2. The only 

contingent theorems proved in this paper are Theorem 1.3, and Theorem 11.3, 

which says that Conjecture 1.2 implies conformal invariance for the scaling limit 

of the UST on subdomains of C. 

Recent work of R. Kenyon [Ken98a], [Ken98b] proves some conformal invari- 

ance results for domino tilings of domains in the plane. There is an explicit 

correspondence between the UST in Z 2 and domino tilings of a finer grid. Based 

on this correspondence, some properties of the UST can be proved using Kenyon's 

machinery. For example, Kenyon has shown [Ken98b] that the expected number 

of edges in a LERW joining two boundary vertices in (/iZ 2) M [0,1] 2 (whose dis- 

tance from each other is bounded from below) grows like 6 -5/4, as 6 -+ 0. He 

can also show [Ken99] that the weak limit as ~ --~ 0 of the distribution of the 

UST meeting point of three boundary vertices of D M (~Z 2) is equivariant with 

respect to conformal maps. That can be viewed as a partial conformal invari- 

ance result for the UST scaling limit. Another example for the applications of 

Kenyon's work to the UST appears in Section 8. It seems plausible that perhaps 

soon there would be a proof of Conjecture 1.2. 

SLE WITH OTHER PARAMETERS, CRITICAL PERCOLATION, AND THE UST 

PEANO CURVE. Let n /> 0, and take ~(t) := B(-nt ) ,  where B is as above, 

Brownian motion on 0U, started from a uniform random point. Then there is a 

solution f ( z ,  t) of (1.1) and (1.2), and for each t <. O, f t  = f ( ' ,  z) is a conformal 
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map from U into some subdomain D~ C U. We call the process a~ := U - Dr, 

t ~ 0, the s tochas t ic  LSwner  evo lu t ion  (SLE) with parameter a. It is not 

always the case that a~ is a simple path. Let ~ be the set of all a/> 0 such that 

for all t <: 0 the set a~ is a.s. a simple path. We show in Section 9 that sup ~ ~< 4, 

and conjecture that ~ = [0, 4]. 

In the past, there has been some work on the question of which LSwner 

parameters ~ produce slitted disk mappings ([Kuf47], [Pom66]), but only lim- 

ited progress has been made. Partly motivated by the present work, Marshall 

and Rohde [MR] have looked into this problem again, and have shown that when 

satisfies a HSlder condition with exponent 1/2 and HSlder(1/2) norm less than 

some constant, the maps ft are onto slitted disks, and this may fail when r has 

finite but large HSlder(1/2) norm. 

Given some a > 0, even if a ~ ~, the process a~, t ~< 0, is quite interesting. 

It is a celebrated conjecture that critical Bernoulli percolation on lattices in R 2 

exhibits conformal invariance in the scaling limit [LPSA94]. Assuming such a 

conjecture, we plan to prove in a subsequent work that a process similar to 

SLE describes the scaling limit of the outer boundary of the union of all critical 

percolation clusters in a domain D which intersect a fixed arc on the boundary of 

D. We also plan to prove that this implies Cardy's [Car92] conjectured formula 

for the limiting crossing probabilities of critical percolation, and higher order 

generalizations of this formula. 

Figure 1.2. The boundary curve for critical percolation 

with mixed boundary conditions. 
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Let us now briefly explain this. In Figure 1.2, each of the hexagons is colored 

black with probability 1/2, independently, except that the hexagons intersecting 

the positive real ray are all white, and the hexagons intersecting the negative real 

ray are all black. Then there is a boundary path ~, passing through 0 and sepa- 

rating the black and the white regions adjacent to 0. Note that the percolation 

in the figure is equivalent to Bernoulli(i/2) percolation on the triangular grid, 

which is critical. (See [Gri89] for background on percolation.) The intersection 

of/~ with the upper half plane, H : -  {z �9 C: Imz > 0}, which is indicated in 

the picture, is a random path in H connecting the boundary points 0 and co. 

A subsequential scaling limit of ~n~tI exists, by compactness, and naturally, we 

believe that the weak limit exists. Let ~ be the scaling limit curve. The physics 

wisdom (unproven, perhaps not even precisely formulated, but well supported) 

is that  the scaling limit of the "external boundary" of macroscopic critical per- 

colation clusters in two dimensions has dimension 7/4 and is no t  a simple path 

[SD87] (see also [ADA]), and we believe that this is true for 7. 

In a subsequent paper, we plan to prove (by adapting the proof of Theorem 1.3), 

under the assumption of a conformal invariance conjecture for the scaling limit 

of critical percolation, that 7 can be described using a Lbwner-like differential 

equation in the upper half plane with Brownian motion parameter, as follows. 

Consider the differential equation 

(1.6) f , ( z  ) _ Vz �9 M, vt �9 

where ~(t) = B(-a t ) ,  B is Brownian motion on R starting at B(0) = 0, and 

f o ( z )  = z .  Then ft  is a conformal mapping from H onto a subdomain of H, 

which is normalized by the so-called h y d r o d y n a m i c  n o r ma l i z a t i o n  

(1.7) lim f ~ ( z )  - z = O. 
z ---~ OG 

The claim is that  for ~ = 6, the image of the path t ~+ ft (~(t)) has the same 

distribution as % From this, one can derive Cardy's [Car92] conjectured for- 

mula for the limiting crossing probabilities of critical percolation, as well as some 

higher order generalizations. This will be done in subsequent work, but basically 

depends on the ideas appearing in Section 9 below. 

A similar representation applies to the scaling limit of the Peano curve which 

winds around the UST (this curve was discussed in [DD88] and mentioned in 

[BLPS98]), but with tr = 8. Given a domain D C S 2, whose boundary is a 

simple closed path, and given two distinct points a,  b E cOD, there is a naturally 
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defined (subsequential) scaling limit of the Peano curve of the UST in D, with 

appropriate boundary conditions, and the scaling limit is an (unparameterized) 

curve from a to b, whose image covers D. One can show that Conjecture 1.2 

implies a conformal invariance property for the scaling limit. Based on this, it 

should be possible to adapt the proof of Theorem 1.3 to show that Conjecture 

1.2 implies a representation of the form (1.6) for this Peano scaling limit when 

D -- ]E, a = 0, b = co, and ~ -- 8. We give a brief overview of this in Section 12, 

and hope to give a more thorough treatment in a subsequent paper. 

The differential equation (1.6) is very similar to LSwner's equation, and the 

only essential difference is that a normalization at an interior point for the maps 

ft is replaced by the hydrodynamic normalization (1.7) at a boundary point (ec). 

The interior point normalization is natural for the LERW scaling limit, because 

the LERW is a path from an interior point to the boundary of the domain. The 

Peano curve and the boundary of percolation clusters, as discussed above, are 

paths joining two boundary points, and hence the hydrodynamic normalization 

is more appropriate for them. 

Although LSwner's Slit Mapping Theorem mentioned above applies to domains 

of the form U - a, where a is a simple path in U - {0} with one endpoint in 0U, 

Pommerenke [Pom66] has a generalization, which is valid for some paths a which 

are not simple paths. It is this generalization (or rather, its version in H with 

the hydrodynamic normalization) which will substitute LSwner's Slit Mapping 

Theorem for the treatment of the percolation boundary or Peano curve scaling 

limits. 

The emerging picture is that different values of a in the differential equations 

(1.1) or (1.6) produce paths which are scaling limits of naturally defined processes, 

and that these paths can be space-filling, or simple paths, or neither, depending 

on the parameter a. 

ACKNOWLEDGEMENT: I wish to express gratitude to Itai Benjamini, Rick 

Kenyon and David Wilson for inspiring discussions and helpful information. 

Lemma 3.1 has been obtained jointly with Itai Benjamini. David Aldous, Mladen 

Bestvina~ Brian Bowditch, Steve Evans, Yakar Kannai, Greg Lawler, Russ Lyons, 

Yuval Peres, Steffen Rohde, Jeff Steif, Benjamin Weiss and Wendelin Werner have 

provided very helpful advice. 

2. Some background and terminology 

This section will introduce some notations which will be used, and discuss some 

of the necessary background. We begin with a review of uniform spanning trees 
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and forests. The reader may consult [BLPS98] for a comprehensive treatment of 

that subject. 

THE DOMINATION PRINCIPLE. Suppose that H and H' are two random subsets 

of some set. We say that H' stochastically dominates  H if there is a proba- 

bility measure # on pairs (A, B) such that A has the same law as H, B has the 

same law as g ' ,  and #{(A,B): B D A} =- 1. Such a # is called a monotone  

coupling of H and H'. 

Let G be a finite connected graph, and let Go be a connected nonempty sub- 

graph. Let M be the set of vertices of Go that are incident with some edge 

in E(G) - E(G0). (We let E(G) and V(G) denote the edges and vertices of G, 

respectively.) Let GOW be the graph obtained from G by identifying all the ver- 

tices in M to a single vertex, called the wired vertex. Then GOW is called the 

wired graph associated to the pair (Go,G). Let T be the UST on G, let T F 

be the UST on Go, and let T W be the UST on G W. Then To E is called the free 

spanning tree of the pair (Go, G), and To W is the wired spanning tree of the 

pair (Go, G). Sometimes, we call ToE [respectively, To W] the UST on Go with free 

[respectively, wired] boundary conditions. The dominat ion  principle states 

that ToE N Go stochastically dominates T N Go, and that T N Go, stochastically 

dominates ToW D Go. 
Now let G be an infinite connected graph, and let G1 C G2 C .-- be an infinite 

sequence of finite connected subgraphs satisfying Uj Gj = G. Let #w be the law 

of the wired spanning tree of (Gj, G). Based on the domination principle, it is 

easy to verify that the weak limit #w of #w exists, and is a probability measure 

on spanning forests of G. It is called the wired spanning forest of G (WSF). 

The domination principle, when appropriatly interpreted, carries over to infi- 

nite and to disconnected graphs as well. If G is a disconnected graph, we take the 

FSF [respectively, WSF] on G to be the spanning forest of G whose intersection 

with every component of G is the FSF [respectively, WSF] of that component, 

and with the restriction to the different components being independent. The 

more general formulation of the domination principle states that when Go is a 

subgraph of G, then ToE AGo stochastically dominates TAG0 and TNGo stochas- 

tically dominates ToW N Go, where T, ToE and ToW are the FSF on G, Go and G W, 

respectively, and the same statement holds when FSF is replaced by WSF. 

On all recurrent connected graphs, the WSF is equal to the FSF, and both 

are trees. Therefore, on recurrent graphs we shall refer to this measure as the 

uniform spanning tree (UST). 

(:]RID APPROXIMATIONS OF DOMAINS. Let D C C be a domain, that is, an 
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open, connected set. Given 5 > 0, we define a graph G = G(D, 5), which is 

a discrete approximation of the domain D in the grid 5Z 2, as follows. The 

in t e r io r  ve r t i ce s  VI(G) = VI(D, 5) of G are the vertices of 5Z 2 which are in 

D. The b o u n d a r y  ve r t i ces  Vo(G) = Vo(D, 5) are the points of intersection of 

the edges of the grid 5Z 2 with cOD, the boundary of D. The vertices of G are 

V(G) = Vo(G) t2 VI(G). If a, b E V(G) are distinct, then [a, b] is an edge of G iff 

there is an edge e e E(SZ 2) such that the open segment {ta+ (1 -t)b: t �9 (0, 1)} 

is contained in D N e. 

We will often be considering random walks on G(D, 5) starting at 0, when 

0 �9 D. It will be useful to denote by V ~ the set of vertices v �9 Vo(D, 5) such 

that there is a path from 0 in G(D, 5) whose intersection with Vo is v. 

The wired graph, GW(D, 5), associated with D is G(D, 5) with all the vertices 

Vo(D, 5) collapsed to a single vertex, which we simply denote cOD. 

We shall often not distinguish between a graph and its planar embedding, if 

it has an obvious planar embedding. For example, the UST on G will also be 

interpreted as a random set in the plane. 

WILSON'S ALGORITHM. Let G be a finite graph. Wilson's algorithm [Wi196] 

for generating a UST in G proceeds as follows. Let v0 E V(G) be an arbitrary 

vertex (which we call the root), and set To :-- {v0}. Inductively, assume that  

a tree Tj C G has been constructed. If V(Tj) ~ V(G), choose a vertex vj+l c 
V(G) - V(Tj), let Wj+I be LERW from v to Tj in G, and set Tj+I := Tj U Wj+I. 
Otherwise V(Tj) = V(G), and the algorithm stops and outputs Tj. It is somewhat 

surprising, but true, that no matter  how the choices of the vertices vj are made, 

the output of the algorithm is a tree chosen according to the uniform measure. 

If G is infinite, connected and recurrent, Wilson's algorithm also "works". 

When the subtree Tj generated by the algorithm includes all the vertices in a 

certain finite set K C V(G), the subtree of Tj spanned by K (that is, the minimal 

connected subgraph of Tj that contains K) has the same law as the subtree of the 

UST of G spanned by K.  (There is also a version of Wilson's algorithm which is 

useful for generating the WSF of a transient graph, but we shall not need this.) 

HARMONIC MEASURE ESTIMATES. Because of Wilson's algorithm, many 

questions about the UST can be reduced to questions about simple random 

walks (SRW's). It is therefore hardly surprising that we often need to obtain a 

h a r m o n i c  m e a s u r e  e s t ima te ,  that is, an estimate on the probability that SRW 

starting from a vertex v will hit a certain set of vertices K1 before hitting another 
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set Ko. As a function of v, this probability is harmonic 3 away from Ko U K1. 

Almost all the harmonic measure estimates which we will use are entirely 

elementary, and follow from the following easy fact. Consider an annulus A = 

A(p, r, R), with center p, inner radius r and outer radius R > r. Suppose that  6 is 

sufficiently small so that  there is a path in 5Z 2 N A which separates the boundary 

components of A. Let q E 6Z 2 N A be some vertex such that  the distance from q 

to the boundary OA is at least r/c, where c > 0 is some constant. Let X be the 

image of SRW start ing from q, which is stopped when it first leaves A. Then the 

probability that  X contains a path separating the boundary components of A is 

bounded below by some positive function of c. (This can be proved directly using 

only the Markov property and the invariance of SRW under the automorphisms 

of 6Z 2.) One consequence of this fact and the Markov property, which we will 

often use, is as follows. 

LEMMA 2.1: Suppose that K is a connected subgraph of 5Z 2 Of diameter at least 

R, and v E 6Z 2 . Then the probability that SRW starting from v will exit the ball 

B ( v, R) before hitting K is at most Co (dist(v, K ) / R ) c, , where C - 0, C1 > 0 are 

absolute constants. 

This lemma holds for the spherical as well as Euclidean metric. 

LAPLACIAN RANDOM WALK. Although this will not be needed in the paper, we 

have to mention another interpretation of LERW. Let G be a finite connected 

graph, let K C V(G) be a set of vertices, and let a E V(G) - K .  The LERW from 

a to K can also be inductively constructed, as follows. Suppose that  the first n 

vertices a = LE(1), LE(2) , . . . ,  kF(n) have been determined and LF(n) ~ K.  Let 

hn: V(G) --+ [0, 1] be the function which is 1 on K,  0 on {LE(1) , . . . ,  kE(n)} and 

harmonic on V ( G ) -  ( g  U {LE(1) , . . . ,  LE(n)}). Then LE(n + 1) is chosen among 

the neighbors w of kE(n), with probability proportional to hn(w). 

This formulation of the LERW may serve as a heuristic for Conjecture 1.2, 

since discrete harmonic functions are good approximations for continuous har- 

monic functions, and continuous harmonic functions in 2D have conformal invari- 

ance properties. However, this heuristic is quite weak, since near a non-smooth 

boundary of a domain, the approximation is not good. 

WEAK CONVERGENCE OF MEASURES. We now recall several facts and defini- 

tions regarding weak convergence. The reader may consult [EK86, Chap. 3] for 

proofs and further references. Let (X, d) be a compact metric space, and let {#j } 

3 A function h is harmonic  at v, if h(v) is the average of the value of h on the 
neighbors of v. 
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be a sequence of Borel probability measures on X. Let # be a Borel probability 

measure on X. Saying that the sequence #j converges weakly to # means that  

limj f f d#j = f f d# for all continuous f:  X --+ R. The Prohorov metric on the 

space of Borel probability measures on X is defined by 

d'(#, # ' ) : =  inf{e > 0: # ( g )  < #'(NE(K))+e for all closed g C X}, 

where N~(K) := [,J~eg B(x, e) is the c-neighborhood of K.  The space of Borel 

probability measures on X is compact with respect to the Prohorov metric, and 

weak convergence is equivalent to convergence in the Prohorov metric. 

Let A,~(#,#') be the collection of all Borel measures v on X x X such that  

~,(A x X) = #(A) and v(X x A) = #'(A) for all measurable A C X. Such a v is 

called a coup l ing  of tt and it r. The Prohorov metric satisfies 

(2.1) d'(#, #') = inf inf{e > 0: u{(x,y): d(x,y) >1 e} <~ e}. 
ve~(t,,t,') 

In other words, d'(#, #') < e means that one can find a probability space (fl, P) 

and two X valued random variables x, y: ~ --+ X, such that  P[d(x, y)/> e] ~< e and 

such that  x has law # and y has law #~. This is obtained by taking an appropriate 

P = v E M(# ,# t ) ,  s := X • X, and letting x and y be the projections on the 

first and second factors, respectively. 

CONFOR.MAL MAPS. We review some elementary facts about conformal map- 

pings, as may be found in [Dur83], for example. Let D C C be some domain. 

A continuous map f :  D ~ C, which is injective and complex-differentiable, is 

conformal .  If f is conformal, then f - l :  f(D) ~ C is also conformal. (Some 

authors use the word un iva len t  instead of conformal.) 
Let D C C be simply connected. Then Riemann's Mapping Theorem states 

that  there is a conformal homeomorphism f = fD from U onto D. Suppose also 

that  0 E D; then f can be chosen to satisfy the normalizations f(0) = 0 and 

f'(O) > 0, which render f unique. In this case, the number f'(O) is called the 

c o n f o r m a l  r ad ius  of  D (with respect to 0). The Schwarz Lemma implies that  

(2.2) f ' (0) >/ inf{N:  z ~t f (U)) ,  

while on the other hand, the Koebe 1/4 Theorem gives 

(2.3) f ( 0 )  < 4inf{Izl: z ~ f(U)}. 

Hence, up to a factor of 4, the conformal radius can be determined from the 

in-radius. 
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If 0 < a < b < co, then the set of all conformal maps f :  U -+ C satisfying 

f(0) = 0 and a ~ If~(0)l <~ b is compact, in the topology of uniform convergence 

on compact subsets of U. If fj:  U --+ C are conformal, fj(O) = 0, and f j  --+ f 

locally uniformly, then the image f(U) can be described in terms of the images 

Dj := f j  (U). Let D be the maximal open connected set containing 0 and con- 

tained in [-J,~--1 Nj~--,~ Dj. If D r 0, then f(U) --- D; otherwise, f(U) -- {0}. This 

is called Carath~odory's Kernel Convergence Theorem. 

If f :  U ~ D is a conformal homeomorphism onto D, and OD is a simple closed 

curve, then f extends continuously to 0U. The same is true if D = U - /3,  where 

/3 is a simple path. 

3. No  loops 

In this section, we prove that any LERW subsequential scaling limit is supported 

on the set of simple paths. That is, we prove Theorem 1.1. 

Let 01 and 02 be distinct points in R 2. For each 5 > 0, let o~ and o~ be vertices 

of 5Z 2 closest to Ol and 02, respectively. Note that in 5Z 2 the combinatorial 

distance between two vertices v, v' E 5Z 2 is 5-111v - v ' l l  1 .  However, all metric 

notions we use will refer to the Euclidean or spherical distance. In this section, 

we will mainly use the Euclidean metric. 

Let RW be a random walk on 5Z 2 starting at o~ and stopped when o~ is reached 

for the first time. Let w = we denote the loop-erasure of RW, and let P~ denote 

the law of w~. The following lemma will show that the diameter of w~ is "tight". 

LEMMA 3.1: 

P~ [diamw > s dist(o~, o~)] ~< Cos -C' , 

where Co, C1 > 0 axe absolute constants. 

The proof is based on Wilson's algorithm and an elementary harmonic measure 

estimate. A more precise estimate can be obtained by using the discrete Beurling 

Projection Theorem (see [Kes87] or [Law93]). 

Proof: Set r := dist(o~,o~), R := sdist(o~,o~)/4, and let z e ~Z 2 be some 

vertex such that  dist(o~,z) >/ 10R. For a,b E 5Z 2, let Wa,b denote the path in 

the UST of 5Z 2 joining a and b. Let m be the meeting point of o~, o~, z in the 

UST, that  is, the vertex in wo;,o; 0 Wo{,z 0 wo~,z. By Wilson's algorithm, the 

distribution of w is identical with the distribution of wo;,,~ U wo~,m. 

We now estimate P [diam(wol,m ) > s dist(o~', o~)]. Using Wilson's algorithm, 

we may generate wol,m by letting wo;,z be LERW from o~ to z, and letting 

Wol,m be LERW from o~ to Wo~,z. Condition on Wo~,z. By Lemma 2.1, the 
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probability that SRW starting at o~ will exit B(o~, R) before hitting Wol,~ is at 

most C2(r/R) Ca, for some constants C2, C3 > 0. Therefore, 

P[diamwo~,m > 2R] < C2(r/R) C3. 

Moreover, the same estimate holds for diana Wo~,m. Since Wo~,o~ = Wo~,m t_J Woe,m, 
we get P[diamwobo ~ > 4R] ~< 2C2(r/R) ca. This completes the proof of the 

lemma. II 

Remark 3.2: The proof of the lemrna can be easily adapted to show that  if 

a, b C 5Z 2 and K C 5Z 2, then the probability that LERW from a to K will 

intersect B(b, r) is at most C4(r/dist(a, b)) C5, provided r/> 5, where C4, C5 > 0 

are absolute constants. 

Definition 3.3: Let z0 E ~2, r,e > 0. An (z0,r,e)-quasi-loop in a path w is 

a pair a,b E w with a,b E B(zo,r) ,  dist(a,b) ~< ,, such that the subarc of w 

with endpoints a, b is not contained in B(zo, 2r). Let ,4(zo, r, ,) denote the set of 

simple paths in •2 that have a (Zo, r, ,)-quasi-loop. 

LEMMMA 3.4: Let c be the distance from o~ to o~, let r E (0,c/4), , > 0 and 

zo E l~ 2 . Then lira,-.0 P~[,4(zo, r, e)] = 0, uniformly in 5. 

Proof: Let B1 = B(zo, r) and B2 = B(zo, 2r). The distance from B2 to at least 

one of the points o~, o~ is at least c/4. By symmetry, we assume with no loss of 
generality that dist(o~, B2) >~ c/4. Let el C (0, c/S), and let q be a vertex in 5Z 2 

such that  dist(q, o~) e ['1 - 5, '1]. 
Let w q be a LERW from q to o~ in ~Z 2. Let RW be an independent simple 

random walk from o~. Let RW' be the part of the walk RW until w q is first hit. 

Then, by Wilson's algorithm, w~ has the same distribution as the arc connecting 

o~ to o~ in LE(RW') U w q. 
Let ,4' be the event that LE(RW') has a (zo, r, c)-quasi-loop, and let C be the 

event that  o2 q intersects B2. Observe that 

(3.1) ,4(z0, r, ,) C ,4' U C. 

Since dist(q, o~) ~< ,1 and dist (B2, o~) /> c/4, from Lemma 3.1 we get an estimate 

of the form 

(3.2) P[C] ~< C6(o/c) C'. 

We now find an upper bound for P[,4' -C] .  Let Sl be the first time s /> 0 

such that  RW(s) E B1. Let tl  be the first time t >/Sl such that  RW(tl) ~ B2. 
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Inductively, define sj  to be the first time s >. t j -1  such that RW(s) E B1 and tj 

to be the first time t >. s j  such that RW(t) ~ B2. Let T be the first time t ) 0 

such that  NW(t) E w q. Finally, for each s ) 0 let RW s be the restriction of NW 

to the interval t E [0, s]. 

For each j = 1, 2 , . . . ,  we consider several events depending on NW t~ and w q. 

Let y j  be the event that LE(RW tj) has a (z0, r, e)-quasi-loop. Let Tj be the event 

that T >. t j .  Observe that LE(RW t) N B1 C LE(RW tj) if t E [tj, Sj+l). It follows 

that ,At _ C c Yj, if j~ is the largest j with t j  ~< r. Therefore, 

,A,-c c U(yjn ). 
j = l  

Since Tj D Tj+I for each j ,  this implies 

m 

(3.3) ,A t - C C Tm+l U U ,.Vj 
j = l  

for every m. 

We first estimate P[T3+I I RWtJ, wq]. Conditioned on any w q, the probability 

that  a SRW starting at any vertex outside of B2 will hit w q before hitting B1 is 

at least 

68(s  ~ , 

where Cs > 0 depends only on c and r, and C9 > 0 is an absolute constant. This 

is based on the fact that w q is connected, contains oi, and has diameter at least 

el - 5. Applying this to the walk RW from time tj on, we therefore get 

P[Tj+I t RW tj, ~q] ~< 1 - C s ( e l )  c9. 

By induction, we therefore find that 

(3.4) Pt m i < (1 -  cs(r m-1 

We now estimate P[Yj+I I -~Yj, RWt~] �9 Let Qj be the set of components 

of [E(RW sj+l) M B2 that  do not contain RW(sj+I). Observe that for Yj+I to 

occur, there must be a K E Qj such that  the random walk RW comes at some 

time t E [Sj+l,tj+l] within distance e of K n B1 but RW(t) ~ K for all t E 

[sj+l,t j+l].  But if RW(t) is close to K,  t E [Sj+l,tj+x], then Lemma 2.1 can 

be applied, to estimate the probability that RW will not hit K before time tj+l.  

That is, conditioned on RW sj+l, for each given K E Qj ,  the probability that  
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RW([Sj+l,tj+l]) gets to within distance e of K but does not hit K is at most 

ClO(e/r)C~ 1, where C10, C l l  > 0 are absolute constants. Consequently, we get 

P[3;j+~ I -~Yj, RWt'] ~< C~OlQ~l(e/r) C'l 

Observe that [Qj[, the cardinality of Qj, is at most j .  Therefore, 

P[Yj+I I -~Yy] < ClOj(e/r) Ctl. 

This gives 

m rn--1 m--1 

j = l  j : l  j = l  
m--1 

(3.5) <~ E jClO(e/r)Cll <" C12m2(e/r)C'l" 
j = l  

Combining this with (3.1), (3.2), (3.3) and (3.4), we find that 

PS[.A[(zo,T,e)] ~ C6(el/C) C~ --bC12m2(s (1 - C s e f 9 )  m - 1  

The lemma follows by taking m : =  [s and el := - 1 / l o g e ,  say. | 

THEOREM 3.5: Let (X, d) be a compact metric space, let ol, 02 E X ,  let f: (0, c~) 
--* (0, o0) be monotone increasing and continuous, and let F = F(f )  be the set 

of a11 compact simple paths 7 C X with endpoints ol and 02 which satisfy the 
following property. Whenever x, y are points in 7 and D(x, y) is the diameter of 

the arc of 3' joining x and y we have 

(3.6) d(x, y) >. f (D(x ,  y)). 

Then r is compact in the Hausdorff metric. 

For this we will need Janiszewski's [Janl2] topological characterization of [0, 1] 

(see [New92, IV.5]): 

LEMMA 3.6 (Topological Characterization of Arcs): Let K be a compact, con- 

nected metric space, and let ol, o2 E K. Suppose that for every x E K - {ol, o2} 

the set K - {x} is disconnected. Then K is homeomorphic to [0, 1]. | 

Proof of Theorem 3.5: Let 7 / =  7/(X) denote the space of compact nonempty 

subsets of X with the Hausdorff metric du. Let 3' be in the closure of F in 7-/. 
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Then ~/is connected, compact, and "y D {ol, o2}. We now use Lemma 3.6 to show 

that ~ is a simple path. Indeed, suppose that x �9 7 -  {ol, 02}. 

We show that  ol and 02 are in distinct components of ~ - {x}. Let {%} be 

a sequence in F such that dn(~/,,~) < 1/n, and let {xn} be a sequence with 

x ,  �9 ~ and d(x,~, x) < 1/n. For each n let 7 ~ be the closed arc of ~/~ with 

endpoints Ol and x,~, and let ~/~ be the closed arc of ~/n with endpoints x~ and 02. 

By passing to a subsequence, if necessary, assume with no loss of generality that  

the Hausdorff limits ~,o~ = lim~,Ol and ~/o: = lim~/O2 exist. If p~ E ~,o~, q, �9 ~o2 

then d(pn, qn) ~ f(d(p,~, x,~)), since 7~ �9 F( f ) .  By taking limits we find that  

if p �9 ~/~ and q �9 ~02, then d(p,q) >1 f(d(p,x)). Consequently, ~/o~ _ {x} and 

~,o~ _ {x} are disjoint. Because ~,o~ U ~o2 = ~/and ~/o~, ~,o2 are compact, the set 

~ / -  {x} is not connected. Hence, by Lemma 3.6, ~/is a simple path. 

It remains to prove that ~/~ F(f ) .  For any simple path ~ C X with endpoints 

ol,o2, let R(/?) be the set of all (x,y) �9 fl • ~ such that  x belongs to the subarc 

of ~ with endpoints ol and y. With arguments as above, it is not hard to show 

that lira R(%)  = R(~/), in the Hausdorff metric on X x X. Since f is continuous, 

it then easily follows that ~/ �9  F(f ) .  The details are left to the reader. (Actually, 

one can see that this statement is not essential for the proof of Theorem 1.1. 

There, we only need the fact that the Hausdorff closure of F( f )  is contained in 

the set of simple paths.) | 

Proof of Theorem I.I: We start with the proof of the second statement, and 

first assume that  a, b r co. Let o~ and o~ be vertices of 5Z 2 closest to a and b, 

respectively. Let w~ be LERW from o~ to o~ in (~Z 2, and let w~ be a path from 

a to b, obtained by taking the line segment joining a to a closest point a' on w~, 

taking the line segment joining b to a closest point b' on w~, and taking the path 

in w~ joining a' and b'. Then the Hausdorff distance from w~ to w~ is less than 

25. Let P} be the law of w~. Let # be some subsequential weak limit of P~ as 

5 -+ 0. Then it is also a subsequential scaling limit of P}. Let m be large. By 

Lemma 3.1, there is an R,~ such that  with probability at least 1 - 2 -m-1 we 

have w~ C B(ol, R,~). For each j E N, let ~ ,  z j be a finite set of points in 
" " " ' k i 

li~ 2 such that the open balls of radius 2 - j - 2  about these points cover 9 ( o l ,  Rm). 

For each j �9 N, let e~ �9 (0, 1) be sufficiently small so that 

(3.7) < 2-m-2-qk , 

for all i = 1 , . . .  ,kj, and for all 5 > 0. Such e~ exist, by Lemma 3.4. Finally, 

let fro: (0,o c) --+ (0,oo) be a continuous monotone increasing function satis- 
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fying fm(2 2-j) ~< 2 -3 min(e~, 2 - j )  for each j -- 1, 2 , . . .  and sups>0 fm(S) <<. 
2 -3 min(e~, 1/2). 

Let Xm be the space of all compact nonempty subsets of B(Ol, Rm), and set 

oo kj 

Q ~  := z ~  - U i i ArzJ 2 - j - 1  , i ,  , ~ ) .  
j = l  i = l  

Note that  

(3.8) P~(~Q,~) ~< 2 -m, 

for all 5 and m. Also note that if we set X := B(Ol, Rm) and f := fm in Theorem 

3.5, then 

(3.9) Qm C Fm := F(fm). 

Indeed, suppose that 7 E Xm is a path in X joining a and b and 7 ~ Fro. Then 

there are x, y E 7 and w contained in the arc of 7 joining x and y such that 

dist(x,y) < 2f(dist(x,w)). Since s u p f  ~< 2 -4, we have dist(x,y) < 2 -3. Let j 

be such that  2 - j+ l  ~< dist(x, w) ~< 2 -j+2. Then 

dist(x, y) < 2f(dist(x, w)) ~< 2f(2 -j+2) ~< 2 - j -2 ,  dist(x, y) < 2-3e~. 

Let i �9 {1 , . . . ,  kj} be such that dist(x, z j) ~< 2 - j -2 .  Then dist(z~, w) ~> 2 - j  and 
x,y �9 B(z~, 2-J- l ) .  Consequently, since d(x,y) < e?,  we have 

j 2 - J - 1  .m~ 7 �9 A(z~ ,  , ~s j. 

This proves (3.9). 

By (3.8) and (3.9), we get P~(-~F,n) ~< 2 -m. Theorem 3.5 t e l l s  u s  that rm is 

compact. Therefore, we also have #(-~Fm) ~< 2 -m, and so 

This completes the proof for the case a, b r c~, because each element of Um Fm 

is a simple path. 

The proof when a or b is oo is similar. One only needs to note that Lemma 

3.4 is valid when zo = e~ and the distances are measured in the spherical metric. 

Indeed, the basic harmonic measure estimate Lemma 2.1 is also valid in the 

context of the spherical metric. 
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The proof of the first statement of Theorem 1.1 is also similar. The details are 

left to the reader. I 

Note that  the first statement of Theorem 1.1 implies that for almost every 

subsequential scaling limit path 3' from a to OD, the closure of q, N D intersects 

OD in a single point. This fact is easy to deduce directly, since it is also true for 

the image of SRW starting near a and stopped when OD is hit. 

4. F i r s t  s t eps  in t h e  p r o o f  of  T h e o r e m  1.3 

Throughout  this section we assume Conjecture 1.2. Let a be random, with the 

law of the scaling limit of LERW from 0 to 0U. From Theorem 1.1 we know that  

a is a.s. a simple path. 

Recall that if D C D ~ C C are simply connected domains with 0 E D, then 

the conformal radius of D ~ is at least as large as the conformal radius of D. This 

follows from the Schwarz Lemma applied to the map fD 1, o fD:  U --4 U. 

For each t E ( - co ,  0], let at be the subarc of a with one endpoint in 0U 

such that  the conformal radius of U - at is expt. It is clear that  at varies 

continuously in t. Let ft: U --4 U - at be the conformal map satisfying ft(O) = 0 

and f[(0) = expt. By LSwner's slit mapping theorem [LSw23], there is a unique 

continuous ~ = r ( -c~,  0] --+ 0U such that the differential equation (1.1) holds. 

Let ~" -- ~'a: ( - co ,  0] --+ R be the continuous function satisfying r = exp(i~(t)) 

and ~'(0) E [0, 21r). Our goal is to prove 

PROPOSITION 4.1: The law o r r i s  stationary, and ~'has independent increments. 

This means that for each s < 0 the law of the map t ~-> ~'(s + t) restricted to 

( -c~,0]  is the same as the law of ~', and that for every n E N and to ~< tl  <~ 

�9 -" < tn < 0, the increments ~'(tl) - ~'(t0), ~'(t2) - ~ ' ( t l ) , . . . ,  ~'(tn) - ~'(tn-1) are 

independent. The proof of this proposition, as well as the next, will be completed 

in later sections. 

Note that  Conjecture 1.2 implies that the distribution of a is invariant under 

rotations of U about 0. Let a 1 be random with the law of a conditioned to hit 

OU at 1. If A denotes the (random) point in a A 01LI, then a 1 has the same law 

as A-in.  It turns out that Proposition 4.1 will follow quite easily from 

PROPOSITION 4.2: Assume Conjecture 1.2. Fix some t < O. Take a I and a to 

be independent. As  above, let at be the compact arc of a that has one endpoint 

on OU and such that the conformal radius of U - at is exp(t). Let q(t) be the 

endpoint of at that is in U. Let r be the conformaJ map from U onto U - at 

satisfying r = 0 and r = q(t). Then at U r "1) has the same law as a. 
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Now comes an easy lemma about  LERW, and Proposition 4.2 will be obtained 

from this lemma by passing to the scaling limit. The passage to the scaling limit 

is quite delicate. Recall the definition of the graph G(D, 6) approximating a 

domain D, from Section 2. 

LEMMA 4.3: Let 6 > 0 and t < 0 be fixed, and let D c C be a simply connected 

domain with 0 E D. Let13 b e L E R W f r o m  0 to OD in G(D,6).  Let t3t be 

the compact arc in ~ such that  j3t ;~ 0D is an endpoint of fit and such that the 

conformal radius o l D  - flit is exp(t). Let qx(t) be the endpoint of J3t that is not 

on OU. Set Dt = D - fl~. Then the law of f - j3t conditioned on flit is equai to 

the law of L E R W  from 0 to ODt, conditioned to hit ql(t). 

Proo~ There are several different ways to prove this lemma. We prove it using 

the relation between LERW and the UST. Suppose that  a is a path  such that  

fit = a has positive probability. We assume for now that  the endpoint q of a 

which is in D lies in the relative interior of an edge e of 6Z 2 (this must be true 

except for at most a countable possible choices of t), and set & := a - e. Let ~ be 

the endpoint of & in D. Let T be the UST on GW(D, 6), the wired graph of D. 

Then 13 may be taken as the path  in T from 0 to OD. We may generate T using 

Wilson's algorithm with root OD, and starting with vertices Vl = ~ and v2 = 0. 

Conditioning on fit being equal to a is the same as conditioning on a C/~, which 

is the same as conditioning on the LERW LE1 from v~ to OD to be & and that  

the LERW from v2 to LE1 hits ~ through the edge e. This completes the proof 

in the case where q is not a vertex of 6Z 2. The case where q E V(6Z 2) is t reated 

similarly. | 

5. Gett ing  uniform convergence 

The principle goal of this section is to state and prove Proposition 5.5 below. 

The main point there is that  Conjecture 1.2 implies that  the weak convergence 

of loop erased random walk in a domain D C U is uniform in D. 

The  first l emma shows that  it is unlikely for a simple random walk to get far 

away from the boundary of a domain D after getting close to OD but before 

hitt ing OD, even if the walk is conditioned to hit OD at a certain set of vertices 

Q. 

LEMMA 5.1: Let K be a compact connected set in U that contains OU but with 

0 ~ K .  Let F be a compact subset of U - K ,  and let e > O. Then there is a 

61 > 0 with the following property. Let K '  be a compact connected set in U with 
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K' D OU and dn(u) (K, K')  < 51/5. Set D = U - K' .  Let 6 e (0, 61/5), and let 
Q c V~(D, 6) be nonempty. Let RW Q be the random walk on G(D, 6) starting 
at 0 that stops when it hits Vo(D, 6), conditioned to hit Q. Then the probability 
that RW Q will reach F after visiting some vertex within distance 61 of K is less 
than e. 

Proof: We need to recall some basic facts relating the conditioned random walk 

RW q to the unconditioned random walk RW (that stops when hitting Vo(D, 6)). 
First recall that  RW Q is a Maxkov chain. (This is easy to prove directly. See also 

the discussion of Doob's h-transform in [Dur84, w Let v0 be some vertex, 

to 6 N, and W a s e t  of vertices. Let ~- = TW be the least t t> to such that 

RWQ(t) 6 W, if such exists, and otherwise set T = OC. For w 6 W let 

aw(vo,w) := P[~- < c~, RWQ('r) = w ] RWQ(to) = vo], 

and let ~w(vo, w) be the corresponding quantity for RW. Then 

(5.1) aw(vo,  w) = aw(vo ,  w)h(w)  
h(vo) ' 

where h(v) is the probability that RW hits Q when it starts at v. This formula 

is easy to verify. 

Let W1 be the set of vertices v of G(D,6) such that h(v) < eh(0)/5. By (5.1), 

.< 
wEWl WEWl 

Consequently, the probability that RW Q visits W1 is at most e/5. 
Let p be the distance from F to K,  and assume that  10051 < p. Then an easy 

discrete Harnack inequality shows that h(v)/h(O) < Co for all vertices v in F,  

where Co is some constant which does not depend on K '  or 6, but may depend 

on F. There is a first vertex, say ~, visited by RW Q such that the distance from 

to K is at most &l. Let W2 be the set of vertices of G(D,6) in F. If ~ ~ W], 

then h(~) ~> eh(O)/5 and hence 

. . . .  h(w) h(O) (5.2) Z Z 
w6W2 wEW2 w6W2 

But since K is connected, Lemma 2.1 shows that  the probability that  a simple 

random walk starting at ~ will get to distance p/2 from 9 without hitting Vo(D, 5) 
is bounded by C1(61/p) c2, where C1, C2 > 0 axe absolute constants. By (5.2), 

< 5Co - c  c2. 
w 6 W2 
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Consequently, if 51 is chosen sufficiently small, the probability that RW Q starting 

at ~ will hit W2 is less than e/5, provided ~ ~ W1. But P[~ E W1] ~< e/5, since 

the probability that W1 is visited is at most e/5. The lemma follows. I 

In the following, we let RW D'~ denote SRW on G(D, 5) that stops when it hits 

Vo(D, 5), and let RW D'5'Q denote RW D'a conditioned to hit Q, if Q c V~ 5). 

Suppose that ~, is a probability measure on V~(D, 5) and p is random with law 

~; then RW D'a'~ will denote RW D'a conditioned to hit p given p. In other words, 

the law of RW D'a'~ is the convex combination of the laws of the walks RW D'8'{p}, 

with coefficients z~({p}). 

LEMMA 5.2: Assume Conjecture 1.2. Let D C U be a Jordan domain with 

0 E D. Let r D ~ U be the conformal homeomorphism from D to U satisfying 

r = 0, r > 0. Then as 5 ~ 0 the law of the pair 

(r aU M r 

tends weakly to the law of the pair (a, OU M a). 

This lemma is easily proved using arguments as in the proof of Lemma 5.1, 

and is therefore left to the reader. 

If X and Y are random closed subsets of U, we let d'v(X, Y) denote the Pro- 

horov distance between the law of X U 0U and the law of Y U 0U (see Section 2, 

towards the end), where the metric dn(u) is used on 7-/(U). If F is a subset of U, 

we set dF(X, Y) := d'u (X U U - F,  Y U U - F---). This is a measure of how much 

X and Y differ inside F. 

The next lemma shows that up to a specified accuracy the loop-erased random 

walk on a domain D can be approximated by the loop-erased random walk on 

another domain D', where D' is selected from a finite collection of smooth Jordan 

domains. 

LEMMA 5.3: Let e > O. Then there is a 50 > 0 and a finite collection of smooth 

Jordan domains D1, D2, . . . ,  Dn C U with 0 E Dj for all j ,  and with the following 

property. Let D C U be a simply connected domain with B(O, e) C D, let 

5 E (0, 50) and let Q c V~(D, 5) be nonempty. Let F~ be the component of 0 

in the set of points in D that have distance at least e to OD. Then there is a 

D' E {D1,. . .  , Dn} and a probability measure ~, on V~(D', (~) such that 

(5.3) dF, (LE(RWD'a'Q), LE(RWD"6'v)) < e. 

Moreover, we may require that the Hausdorff distance from OD to OD' is at most 
E. 



Vol. 118, 2000 SCALING LIMITS OF RANDOM WALKS 249 

Proof'. We first prove the lemma for some specific D and Q as above. By Lemma 

5.1, there is a 51 > 0 such that with probability >/1 - e / 5  the walk RW D'~'Q does 

not reach F, after exiting F~,, provided 6 E (0, 61/5). Also, there is a 64 < 61 

such that  with probability/> 1 - e/5 this walk does not reach F~ after exiting 

F~ .  Let D'  C D be a smooth Jordan domain with D' D F~, and such that the 

Hausdorff distance from OD' to OD is less than e. For every 6 < 6~/5, let ~ = L,~ 

be the hitting measure of RW D'~'Q on V~ ', 6). Observe that we may think of 

RW D''~'~ as equal to RW D'~'Q stopped when Vo(D', 6) is hit. 

Let A1 be the event that RW D'~'Q does not visit Fe after exiting F~I, and let .A2 

be the event that RW D'~'Q does not visit F~ 1 after exiting F~.  Note that on the 

event .41N.A2, after exiting F~ the random walk does not visit any vertex v which 

was already visited prior to the last visit to Fe. Consequently, the intersection of 

F, with the loop erasure of the walk does not change after the first exit of F~ .  

Since we may couple RW ~ to equal RW D'&Q stopped on Vo(D', 6), this means 

that  we may obtain a coupling giving Fe n LE(RW D'5'Q) = R e n LE(RW D''5'u) o n  

A1 n A2. Since P[A1 n A2] /> 1 - e/2, this proves the lemma for a single D. 

However, the same pair (D', 61) would work for every D" with OD" sufficiently 

close to OD in the Hausdorff metric. Hence, the compactness of the Hausdorff 

space of compact, connected subsets of U - B(0, e) completes the proof. | 

LEMMA 5.4: Let D C U be a smooth Jordan domain with 0 E D, let 6 > O, let 

q E V~ and let RW q := RW D'~'{q}. Then the law of LE(RW q) is uniformly 

continuous in q. That is, for every e > 0 there is a 61 > 0 such that 

d'D(LE(RWq), LE(RWq')) < 

provided 6 E (0,61), and [q-q'[ < 61. 

Proof: Let 5o > 0 be very small. It is easy to see that when Iq - q'] is small 

we may couple RW q and RW q' so that with probability at least 1 - e/5 they are 

equal until they both come within distance 50 of OD. Hence, the lemma follows 

by using an argument similar to the one used in the proof of Lemma 5.3. | 

We now come to the principle goal of this section, proving that Conjecture 

1.2 implies that  the weak convergence of loop erased random walk in a domain 

D C U is uniform in D. 

PROPOSITION 5.5: Assume Conjecture 1.2, and let e > O. Then there is a 51 > 0 

with the following property. Let D C U be a simply connected domain with 

B(O, e) C D, and let F~ be the connected component of 0 in the set of a11 points 
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z with d(z, OD) >1 e. Let 5 e (0,51), and let Q C VO(D,5) be nonempty. Let 

r be the conformal homeomorphism from U to D that satisfies r = 0 and 

Ct(O) > O. Then there is a random A E OU independent of a I such that 

LE(Rw',',Q)) < 

The main point here is that 51 does not depend on O or on Q. 

Proof." Let el > 0 be much smaller than e. Suppose that D'  is a domain in the 

list appearing in Lemma 5.3 that satisfies the requirements there with el in place 

of c, and let u be as in that lemma. Fix some small 61. For each q E V~(D ', 5) 

let Uq be restriction of the hitting measure of RW D''~ to B(q, 51) N Vo(D,5),  

normalized to be a probability measure. Lemma 5.4 implies that  we may replace 

u by a probability measure u ~, which is a convex combination of such Uq, while 

having 

(5.4) d'F,, (LE(RWD'"~'v), LE(RWD"a'~")) < el, 

provided 61 is sufficiently small. Moreover, by Conjecture 1.2, provided 51 is 

sufficiently small and 5 E (0, 51), we have 

(5.5) 3F,1 1 (LE(RW ) ,r  )) <~ el, 

where Aq c OU is random and independent of a 1, and r is the conformal home- 

omorphism from U to D' satisfying r = 0 and r > 0. Since the list 

D 1 , . . . , D n  in Lemma 5.3 is finite, we may take 51 to be independent of D. 

Consequently, there is a random A E OU independent of a 1 with 

(5.6) (LE(RW ),r ~< el. 

Provided we have chosen O sufficiently small, we have that ]~b(r - z I < el 

for z E F~/2. Proposition 5.5 now follows from (5.3) with el in place of e and 

from (5.4), (5.5) and (5.6). | 

6. R e c o g n i z i n g  t h e  L S w n e r  p a r a m e t e r  as B r o w n i a n  m o t i o n  

Proof  of Proposition 4.2: Let fl := LE(RW v'~) and let fit, Dt and ql(t) be 

defined as in Lemma 4.3, where D := U. Set 7 := LE(RWD"a'ql(0), where 

RW ~ is taken to be independent of t3 conditioned on fit. Using Conjecture 

1.2, d'v(13, a) ~ 0 as 5 ~ 0. By (2.1), this means that  we may couple fl and a 
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(that is, make them defined on the same probability space, where they are not 

necessarily independent) such that/3 ~ a in 7-/(U), where -~ denotes convergence 

in probability as (f --+ 0. Since a is a.s. a simple path, this also implies that  

A 
Let r be the conformal map from U onto U - at that satisfies r = 0 

and r > 0, and let r be the similarly normalized conformal map from U 
P 

onto U - /3t .  Because/3t --+ at, it follows that r  r in the topology of uniform 

convergence on compact subsets of U. 

Set ~ ( z )  := r and r := r for ~ e OU. Given every e > 0 and 

a closed set A C U let F~(A) be the connected component of 0 in the set of 

points with distance at least e from A (or the empty set, if d(0,A) < c), and let 

W~(A) := U - F~(A). 
By Proposition 5.5, for every e > 0 there is a random ~ E 0U independent of 

a 1 (but not of/3t) such that d'F~(~)(r --+ 0. (The law of ,~ may depend 
P 

on 5 and e.) Observe that P[F2~(at) C F~(/3t)] --+ 1 as 5 --+ 0, because/3t---->at. 

Therefore, we may conclude that d 'f2~(~)(~(al) ,9 ,) --+ 0. Since this is true for 

every e > 0, it follows that  we may choose ~ = ha so that d'u_a~ ( ~ ( a l ) ,  9,) --+ 0, 

as 5 -+ 0. Because Cx P r  we therefore also have d'u_~ (r -+ 0, that 

is, du(at U r at U "y) --+ 0. Since/3t U 9' has the same law as/3 (by Lemma 
P 

4.3), and since/3t --+ at, this gives, 

(6.1) 3u(at u = 3u(a  u u s) -+ 0. 

Let ,~* be random in 0U with a law that is some weak (subsequential) limit 

of the law of ,~ as 5 -+ 0. It follows from (6.1) that at U r  1) has the same 

law as a. In particular, it is a simple path. The only possibility is therefore that  

r -- r a.s., which completes the proof of Proposition 4.2. II 

Proof of Proposition 4.1: Recall that ~ = ~,: (-oo,0] --+ 0U is the Lbwner 

parameter associated to the LERW scaling limit a C U. Let ~ be the Lbwner 

parameter associated with the path a 1, and let it be the associated solution of 

the Lbwner system. Note that  ((0) = 1, since a 1 N 0U = {1}. Fix some to < 0. 

Using Proposition 4.2 and its notations (with to replacing t), we know that  the 

path ~ := ato Ur i) has the same law as a. Let it be the solution of the Lbwner 

system associated with the path ~, and let ~ be the associated Lbwner parameter. 

Then ~ has the same law as ~, by Proposition 4.2. Set )~ := Ir162 When 

t < to, we have 

i t ( z )  = r o 
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because the right hand side is a suitably normalized conformal map from U onto 

U - ~t. We differentiate with respect to t, and use (1.1), to get 

0 ~ (Azl)~]~_~o(AZ) bTf~(z) = r 
~ 

r176 (Az)) Az~'- t~ (Az) ~($ ~ - ~ :  t0) - A z -  t0) + Az = z f ; ( z ) ~ - _ t o ) t ~  +Zz 

Consequently, it follows that ~(t) = A-l~(t - to) for t < to. It is clear that ~ -- 

for t e [to, 0]. Continuity of ~ gives A -1 -- r = ~(t0). Since r and ~ are 

independent, and ~ has the same law as r conditioned on ~(0) = 1, Proposition 

4.1 follows. | 

We shall need the following 

THEOREM 6.1: Let a(t), t >~ O, be a real valued process (that is, a random 

function a: [0, ~ )  -+ ]~). Suppose that a is continuous a.s. and for every n E N 

and every (n-t-1)-tupleO = to 4 tl  4 t2 4 "'" 4 t~, the incrementsa( t j ) -a( t j_ l ) ,  

j = 1 , . . . ,  n, are independent. Then for every fixed So E (0, oo), the random 

variable a(so) is Gauss|an. 

This theorem follows from the general theory of L~vy processes. An entirely 

elementary proof can be found in Section 4.2 of [It661]. 

COROLLARY 6.2: There is a constant c > 0 such that the process ~(t) has the 

same law as B(-ct) ,  where B(t) is Brown|an motion on OU started at a uniform 

random point. 

ProoD That r has the same law as B(-ct) for some c ~> 0 follows immediately 

from Proposition 4.1 and Theorem 6.1. The fact that c > 0 is clear, since the 

LERW scaling limit is not equal a.s. to a line segment. | 

7. T h e  w i nd i ng  n u m b e r  of  SLE 

Let ~/> 0, let B(t) be Brown|an motion on OU started at a uniform random point 

on 0U, and set 

(7.1) 

Definition 7.1: 

ft  defined by (7.1), (1.1) and (1.2) is a.s. for every t < 0 a Riemann map to 

a slitted disk. For ~ E fi, let ~ denote the (random) path defined by ~,~(t) = 

~" = ~ .  : :  B ( -~ t ) .  

Let ~ denote the set of all ~ >t 0 such that the Lhwner evolution 
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ft(~(t)). That  is, ( ,  is the path in U such that f t  is the nomalized Riemann map 

to U - ~ ([t, 0]). 

The random process ~([ t ,0]) ,  t ~< 0, will be called s tochas t i c  L h w n e r  

evo lu t ion  (SLE) with constant ~. 

As before, we let w [0, oo) ~ R be the continuous map satisfying B = expiB 

and B(0) E [0, 21r). 

THEOREM 7.2: Let ~ C ~. Let T <~ O, and let O,~(T) be the winding number of 
the path &([T,0] )  around O, that is O.(T) = arg(&(0))  - arg(&(T)) ,  with arg 
chosen continuous along ~ .  Then for all s > O, 

> .< (7.2) 

and 

r ,  ~(0) B(-~T)[ 
3 

(7.3) P U0~(T)-  + > s] ~< Coexp(-C,s) ,  

where Co, C1 > 0 are constants, which depend only on ~. 

Loosely speaking, the theorem says that t + iB( -~ t )  is a good approximation 

of the path log~( t ) .  A consequence of the theorem is that O ~ ( t ) / v ~  converges 

to a gaussian of unit variance as T -~ -oo.  

Before we prove the theorem, it is worthwhile to have another look at the maps 

defined by O(z, t, s) := f [ l ( f t ( z ) ) ,  t ~ s ~ O, which were discussed in Remark 

1.5. For every t < s ~ 0 the set ~,~ := U -  O(U,t,s) is a path in U. If r E (t,s), 
then ~,~ = %s U �9 ('y~', r, s). Therefore, when s is held fixed and t is decreasing, 

the path "y~ is growing from its endpoint inside U, and if t is held fixed and s 

is increasing, the path "y~ deforms conformally and a new arc is added to it to 

reconnect it to 0U. 

Proos Let f t  be defined by (7.1), (1.1) and (1.2). Set ~ := ~ .  Let w(t ,z)  := 

f t  1 (fT(Z)) = r  T, t) (t C [T, 0]), and let y = y(t, z) := arg w(t, z), where arg w 

is chosen to be continuous in t. 

By Remark 1.5, w satisfies the differential equation 

B(-~t)  + w 

(7.4) atw = - w  S( -a t )  - w'  

where Ot denotes differentiation with respect to t. Set x = x(t, z) := log Iw(t, z)l. 
Then w = exp(x + iy), and (7.4) can be rewritten 

sinhx + i sin(B(-~t) - y) 
(7.5) otx + i&y = 

cosh~  - c o s ( ~ ( - ~ t )  - y )  
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Let zl be a random point on 0U, chosen uniformly, and independent of the 

Brownian motion B. Then w(0, Zl) -- fT(Zl) is some point on the boundary of 

DT :---- fT(U). Note that ODT is a connected set that contains 0U and intersects 

the circle OB(O, exp(T)), by (2.2). Set As := {z G ODT: [z I > exp(T + s)}. 

It follows from the continuous version of Lemma 2.1 for Brownian motion that  

the harmonic measure of As in DT at 0 is bounded by O(1)exp(-C2s), for some 

constant C2 > 0 and every s E JR; that is, at zero, the bounded harmonic function 

on DT that  has boundary values 1 on As and has boundary values 0 on CODT --As 
is bounded from above by O(1)exp(-C2s). Since harmonic measure is invariant 

under conformal maps, we conclude that the measure of fTl(As)  is at most 

O(1)exp(-C2s). This means that  

(7.6) P[log[w(0, Z l ) [ - T  > s] = P[log[fT(Zl)[ - T > s] <. O(1)exp(-C2s). 

Now set z0 = B(-nT) .  Then ~(T) = w(0, zo), and so we need to relate 

[w(0, z0)] and [w(0, zl)[. Let r be the least t 6 [T,0] such that w(t, zl) = B(-nt ) ,  

if such a t  exists, and set T = 0 i f  not. Note that [w(t, zl)[ = 1 whi le t  < T, 

and Iw(t, zl)l < 1 for t E (T, 0]. Also observe that conditioned on Z < 0, the 

law of the process (w(t, zl): t e [T, 0]) is the same as the law of the process 

(w(t + T - T, Z0): t �9 IT, 0]). Consequently, the random variable W(T -- T, zl) 
(where B is taken as two-sided Brownian motion and (7.4) is extended to the 

range t > 0), conditioned on T < 0, has the same distribution as the random 

variable w(O, zo). By (7.5), cOtx <~ O, and therefore [W(T- T, zl)[ ~< [w(0, Zl)l on 

the event T < 0. Thus, for every s �9 R we have 

P[]w(0, zl)[ > s I T < 0] /> P[[w(0, z0)[ > s]. 

Because Iw(0, Zl)] = 1 when T = 0, we may drop the conditioning on T < 0. Now 

(7.6) gives 

P[log ]~(T)] - T > s] = P[log lw(0, z0)] - T > s] < O(1)exp(-C2s). 

On the other hand, the Koebe 1/4 Theorem (2.3) gives 

expT = If~,(o)l ~< 4inf{lz]: z it fT(U)} < 4I~(T)I, 

and so log ]~(T)[ + log 4/> T always. This completes the proof of (7.2). 

Now let ~'1 be the least t �9 [T, 0] such that  x(t) = log [w(t, z0){ <~ -1 ,  and set 

7-1 := 0 if such a t does not exist. Since x(t)~is monotone decreasing, we may 

write y(t) as a function of x: y = g(x). By (7.5), 

s in(B(-~t)  - y(t)) 
g'(x(t)) = sinh x(t) 



Vol. 118, 2000 SCALING LIMITS OF RANDOM WALKS 255 

and hence 
Ig'(x(t))l <~ Isinhx(t)1-1. 

And so we get 

= f~(~l) 
(7.7) lY(0) - Y(~I)I J~(o) I~'(x)l dx lsinhxl dx < or 

oo 

Let r  := ft - l (~(s))  f o r t  ~ s ~< t ~ 0. Then r is continuous and its 
image does not contain 0. Hence, it may be considered as a homotopy in C -  {0} 
from the path r 0) = ~(s), s E [T, 0], to the concatenation of the inverse of the 

path r t) = f,--1 (~(T)) : w(t, Zo), t e [T, 0], with the path r t) = B(-nt ) ,  
t C [T, 0]. Therefore, its winding number is the sum of the corresponding winding 

numbers. This means that 

O,~(T) = B(O) - B( -nT)  + y(T) - y(O). 

By (7.7), it therefore suffices to prove the appropriate bound on the tail of 

lY(n) - Y(T)I. 
Let lY12~ := min{lY - 21rnl: n e Z}. Set to = T, and inductively, let tj be 

i 

- I , nd = the first t e [tj_l,0] such that 7r/2 = ,  ( -n t )  B(-ntj_l).2,~ 
I 

0 if no such t exists. Equation (7.5) shows that Oty(t) has the same sign as 

s in(B(-nt)  - y(t)), and hence 

Ot l y ( t ) -B ( -n s ) i 2  ~ < 0 ,  a t t = s ,  

for every s 6 (T, 0). In other words, y(t) is always moving in the direction which 
would decrease lexp(iy(t)) - B(-~t)l .  Consequently, for every j E N, if there is 

i 

an s 6 [tj,tj+l] such that ,Y(S) fi(-ntj) .2= 
i 

all s' 6 [s, t j+l),  because y(t) cannot get out of the set 
{p 6 R: Ip-B(-ntj)12,~ < ~r/2} while B( -n t )  is in it. This implies that 

ly ( t j+l) -y( t j )  I < 2~r. Hence ly(T1)--y(T)l <. 2rmin{ j  e N: tj > ~'1}. Therefore, 

for every a > 0 and n 6 N, 

(7.8) P[ly(~-l) - y(T)l >~ 2rn] <~ P[T1- T ~ a] + P[tn <. T + a]. 

The first summand on the right hand side is bounded by O(1)exp(-C3 a), for 
some constant C3 > 0, by (7.2). To estimate the second summand, observe that 
conditioned on t,~ ~ T + a, we have probability at least 2 -'~-1 for the event 

(7.9) B( - t~ (T  + a)) - B( -~T)  ) nlr/2, 
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because when tn <~ T +a and B(-~(T  +a)) >~ B(-~t,~) >>.... >1 B(-~to), we 
have (7.9). However, (7.9) has probability 

(27ra~;)-1/2 fnrr/2 exp(--s2/(2t~a)) ds <~ O(1)exp(-n2 /C4a), 

and hence 

Pith <~ T + a] <~ O(1)2nexp(-n2/C4a). 

We choose a to be n times a very small constant. Then our above estimates, 

together with (7.8), give 

P[lY(T1) -- Y(T)I /> 2~rn] ~< O(llexp(-Can), 

with the constants depending only on ~. This completes the proof of the theorem. 
| 

8. T h e  tw i s t i ng  cons t an t  of  L E R W  

Consider some scaling limit measure P of LERW from 0 to 0U, and let 7 be 

random with law P.  Assuming Conjecture 1.2, we have established that SLE 

with some constant no has law P.  In this section we show that e;o = 2, and 

thereby complete the proof of Thereom 1.3. 
Let e E (0, 1), let % be the connected component of 7 - B(0, e) which has a 

point in OU, and let W(%, 0) be the winding number of % around 0, in radians. 

That is, W(%, 0) is the imaginary part of f~, z-ldz. By symmetry, it is clear 
that E[W(3,~, 0)] = 0. We shall show that 

(8.1) E[W(v,,  0) 2] = 2 log ( l / e )+  O(1) v/lo-~'/e).  

Based on this and the results of Section 7, it will follow that no = 2. 

The proof of (8.1) will use Kenyon's work [Ken98a]. The overall idea of the 

proof is very simple, and based on the relations between UST and domino tilings. 

We now briefly review the relations between the UST on Z 2 and domino tilings, 

and the height function for domino tilings. For a more thorough discussion, the 

reader should consult [Ken98a]. 

A d o m i n o  t i l ing of the grid Z 2 is a tiling of R 2 by tiles of the forms 

[ k , k +  1] • ~ , j + 2 ]  and [ k , k + 2 ]  • ~ , j +  1], where k,j e Z. A domino 
tiling of Z 2 may also be thought of as a pe r fec t  m a t c h i n g  of the dual grid 

((1/2) + Z) 2. (A perfect matching of a graph G is a set of edges M C E(G) such 

that every vertex is incident with precisly one edge in M.) 
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Let us start with finite graphs. Let D be a simply connected domain in R 2 

whose boundary is a simple closed curve in the grid Z 2, and let G := Z 2 M D. 

Let P0 be some vertex in OD M 7, 2, which we call the roo t .  Let G be the graph 

((1/2)Z 2) M-D with p0 and its incident edges removed. Then there is a bijection, 

discovered by Temperley, between the set of perfect matchings on G and spanning 

trees of G. 
Temperley's bijection (see Figure 8.1) works as follows. For every edge Iv, u] 

in the matching M such that v E Z 2, we put in the tree the edge eu whose center 

is u. This gives the set of edges in the tree T. If [v, u] E M is as above, we may 

orient the edge eu away from v, and then the tree T will be oriented towards the 

root P0. 

P0 G G matching and tree 

Figure 8.1. Temperley's bijection. On the right, the arrows are edges in 

the matching that contains vertices of Z 2, the solid segments are other 

edges in the matching, and the thin lines are edges in the tree. 

Temperley's bijection works also in more general situations. There is a simple 

modification to make it work for the wired graph associated to the domain D 

(recall the notion of the wired graph from Section 2). Also, given a perfect 

matching on all of (1/2)7, 2 , there is an associated (oriented) spanning forest of 

Z 2. The collection of all domino tilings of Z 2 has a natural stationary probabil- 

ity measure (of maximal entropy), and for a.e. domino tiling the corresponding 

spanning forest is a spanning tree. Temperley's map from perfect matchings on 

(1/2)Z 2 to spanning forests of Z 2 maps the cannonicai probability measure on 

the set of domino tilings to the law of the UST of Z 2. 

Let G and G be as above, and let G be the graph of the domino tiling, that 

is, the union of the squares of edge length 1/2 with centers at the vertices of 



258 o. SCHRAMM Isr. J. Math. 

r  thought of as a subgraph of the grid (1/4, 1/4) + (1/2)Z 2. Associated to a 

domino tiling of G is a he igh t  func t ion  h defined on the vertices of G. Here 

is the definition of h. Pick some vertex v0 E V(G) and some a0 E ]1(, and set 

h(vo) = ao. Color a square face of the grid (1/4, 1/4) + (1/2)Z 2 w h i t e  if its 

center is a vertex of Z 2 or if it is contained in a face of Z 2, and black otherwise. 

If Is, v] ~ E(G) is on the boundary of a domino tile in the tiling, then we require 

that h(v) - h(u) = 1 if the square to the right of the directed edge Is, v] is white 

and h(v) - h ( u )  -- - 1  if the square to the right of Is, v] is black. These constraints 

uniquely specify the height function h (except that  the choices of v0 and a0 are 

arbitrary). 

We will work in the upper half plane H := {z E C: Imz > 0}. Let G~(H) := 

G W (H, 5), the wired graph of mesh 5 associated with the domain H, and G~ (H) := 

HN ((5/4, 5/4) + (5/2)Z2). The discussion above carries through for the grid 5Z 2 , 

in place of Z 2. (Although the distance between adjacent vertices in the graph 

is 5/2 when G c 5Z 2, we still work with the height function where the height 

difference along an edge on the boundary of a tile is :t:1.) Temperley's bijection 

induces a measure preserving transformation between domino tilings of the grid 

G~(]E) and the UST of G~(H). (If we keep the orientation, then the UST is 

directed towards OH.) 

We normalize the height function associated to a domino tiling of G~(H) by 

requiring that  h((5/4,5/4)) = 1/2. Then h(((2k + 1)5/4,5/4)) = ( -1)k/2,  for 

k E Z. If v is some vertex in G~(H), let h(v) be the average of the value of h on 

the vertices of G~ (H) closest to v. 

LEMMA 8.1: Let T be a spanning tree of G~(H), and let h be the associated 

height function. Let v E V(G~(H)) be a vertex different from the wired vertex 

OH, and let a be the real part of v. Let Q~ be the path from v to OH in T, 

considered as a path in the plane, and let Qv be the union of Q~ with the line 

segment joining the intersection Q~ (7 OH to a. Then - r h ( v ) / 2  = W(Q, ,  v), the 

winding number of Q~v around v. 

This lemma is a special case of a more general observation made by Kenyon. 

(Since Q.  is a path with v as an endpoint, we define 

W(Qo,v) : =  W(Qv- ,(v,r),,), 

which is the same as W(Qv - B(v,5/2) ,v) . )  

Proof." Use induction on the length of the path Q~. 
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Symmetry implies that E[h(v)] = 0 for all v �9 V(G~(H)). Kenyon has shown 

[Ken98a] that  

(8.2) E[h(v) 2] = 87r -2 log(l/5) + O(1) 

(provided that v stays in a compact subset of H). Hence E[W(Qv,v) 2] = 
21og(1/5) + O(1), which seems very close to a proof of (8.1). However, to make 

it into a proof of (8.1) requires some effort (it seems). 

The advantage of the height function over the winding number is that the 

height difference between two vertices can be computed along any path joining 

them. On the other hand, to compute W(Qv,v), one might think that it is 

necessary to follow Q,,  which is a random path. It is immediate that h(v) 

is ~ j  AjXj, where Xj is the indicator of the event that  a certain domino tile 

is present in the tiling, and Aj are some explicit easy to compute (non-random) 

weights. This means that to calculate E[h(v) 2] one needs to have a good estimate 

for the behavior of the correlations E[XiXj] for small 5. That 's  how Kenyon proves 

(8.2). 

Recall that  A(p, rl, r2) denotes an annulus with center p, inner radius r l ,  and 

outer radius r2. The following result is an immediate consequence of [ABNW]. 

LEMMA 8.2: Let D C C be a domain, and let vo �9 (TZ 2 VI D be some vertex. 

Consider T, the []ST on 5Z 2 ND, with free or wired boundary. Let r2 > 2rl > 2(7, 

and suppose that r2 is smaller than the distance from vo to OD. Let A be the 

annulus A := A(vo,rl,r2), and let k(A) be the maximum number of disjoint 
paths in T each of which intersects both boundary components of A. Then for 
each k �9 N 

P[k(A) >/k] ~< Co(r2/rl) el(k-l), 

where Co, C1 > 0 are universal constants. | 

LEMMA 8.3: Let D C C be some simply connected domain, and consider T, the 

UST in GW(D,(7) (wired boundary). Let Po E D N (TZ 2. Given a set K C D, 

let X(K)  denote the maximum winding number around Po of a path in T with 
endpoints in K. Let r e (O, d(po, OD)/2). Then for each h > 0 and s >/2, 

P[X(A(po,r /s ,r))  > h]<<. C2exp(-C3h/logs) logs, 

where C2 and C 3 a r e  absolute constants. 

Proof'. Set A := A(po, r/s, r), X := X(A). To begin, assume that  s = 2 and that 

r > 105. Let B1,B2, . . . ,  BN be a covering of A with balls of radius r/lO, where 
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N ~< C4, with C4 some universal constant. Let v0 E A N 5Z 2 be some vertex. For 

any vertex u, let W(u) be the signed winding number around P0 of the path  in 

T from v0 to u. Consider neighbors v, w in A, and let 7 be the UST path  joining 

v and w in T. If 7 ~ [v, w], then 7 U [v, w] is a simple closed path, and hence 

has winding number at most 27r around P0. This implies that  ]W(v) - W(u)l 
is at most 21r plus the absolute value of the winding number of the edge Iv, u] 

around P0, and therefore [W(v) - W(u)[ ~< 31r. Since any two vertices in A can 

be connected by a path  in A, the set {W(v): v e A} intersects every interval of 

length 31r which lies between its maximum and minimum. From this it follows 

that  we may find vertices vl ,v2, . . .  ,vn in A such that  [W(vj) - W(vk)l >/3~r for 

j ~ k and n ~ X/61r. Since N ~< C4, we may find some ball Bm from the above 

collection, satisfying ]Bm M {v l , . . - ,  v,~}[ /> X/6~rC4. However, if v, u E Bm and 

[W(v) - W(u)[ ~> 2r ,  then the path  in T joining v and u must go around P0. In 

particular, it must cross twice the annulus Am := A(cm, r/lO, r /5) ,  where cm is 

the center of Bin. It  follows that  the number of disjoint crossings of Am in T is at 

least IBm M { v l , . . . ,  vn}[. Hence, by Lemma 8.2, for any fixed m the probability 

that  IBmM{vl, . . . ,  vn}l > b is at most O(1)exp(-Chb), for some constant C5 > 0. 

Consequently, P [ X  > h] ~< O(1)Caexp(-Chh/6~rC4), which completes the proof 

in the case s = 2 and r > 105. 

The case r ~< 105 is easy to verify, for then the combinatorial distance between 

any two vertices in A is bounded, which implies that  X is bounded (because 

[W(v) - W(u)[ < 37r for neighbors v,u). 

If s > 2, then we may cover the annulus A with at most 2 log s + 1 disjoint 

concentric annuli with radii ratio 2. In order that  X(A) be at least h, there 

must be one of these smaller annuli A' with X(A') >1 hi(2 log s + 1). The lemma 

follows. I 

LEMMA 8.4 ([Ken98a]): Let p,q E H be any two points. Consider a uniform 
domino tiling of the grid G~(H) C H of mesh 5, and let p',q' E V(G~(~n)) be 

vertices closest to p and q, respectively. Then 

lim E[h(p')h(q')] = 81r -2 log ~ - q . 
~-,o IP - q l 

I t  may be noted that  the right hand side is invariant under conformal auto- 

morphisms of H, since it is the log of the square root of a cross ratio of p, p, q, q. 

Let 5 E (0, 1/4), let v0 be a vertex of the grid ~Z 2 which is closest to i = vrZT. 

Fix some r E (0, 1/4). Let Qv be as in Lemma 8.1, let 7~ be the connected 
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component of Qvo - B(vo, r) that intersects OH, and let W~(r) be the winding 
number of "y~ around v0. 

PROPOSITION 8.5: Assuming r < 1/4, 

(8.3) li~nSoP E[W~(r) 2] - 2log(i/r) ~< C 6 ~ / r ) ,  

where C6 is an absolute constant. 

Proof: Let Vl be a vertex in 5Z 2 such that Vl - vo - r/3 C [0, 5). Let Vo be 
the set of vertices of 5Z 2 whose Euclidean distance to {Vl,VO} is in the range 

(r/9, 2r). Then, assuming that 5 < r/9, Vo separates vo from vl and {vo, Vl} 
from OH in the grid 5Z 2. Given a vertex v, let QO be the union of Q~ with the 

line segment joining the intersection Q~ N OH to 0. Set Q := [.j{QO: v E Vo}. 

Set x j  := W(Qv~,vj), j = 0,1. By Lemma 8.1, we have Xj = -~rh(vj)/2, and 
consequently, Lemma 8.4 gives 

(8.4) lim E[XoX1] = 2 log0/ r  ) + O(1). 
5--~0 

Since Vo separates vo from vl, when conditioning on Q, Xo becomes independent 
of X1. Therefore, 

(8.5) E[X0Xl] ~-- E[E[XoX1 [ Q]] = E[E[X 0 ] Q].E[X1 ] Q]]. 

We shall show that for small 5 > 0, 

(8.6) E [ ( m ( r ) - E [ X j { Q ] )  2] =O(1),  j = 0 , 1 .  

Using (8.5), this implies 

E[W~ (r) 2] - E[XoX1] - O(1)x/E[W~ (r) 21 + O(1). 

Consequently, by (8.4), 

l i~sup E[W~(r) 2] - 2 log(l/r) + O(1)x/E[W~(r) 2] <~ O(1), 

which implies (8.3). It therefore suffices to prove (8.6). 

Let s := min{Iv-v0{: v e Q}. Given Q, let T' be a UST of GW(B(vo, s/2), 5), 
and let T" be the UST of the graph obtained from G~(]~) by identifying the 
vertices of Q. Note that (by Wilson's algorithm, say) T, the UST on G~(H), has 
the same law as T" U Q (as a set of edges). By the domination principle, given 
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Q, we may couple T" and T' so that  E(T") D E(T'). Given Q, we couple T and 

T t so that  T D TL 

Let a be the path in T ~ from v0 to OB(vo, s), and let a be the point where 

a hits OB(vo, s). Then E[W(a,  v0) I Q] = 0, by symmetry, because given Q, 

T' is just ordinary UST on GW(B(vo,s/2),5). But a is also a path in T. Let 

be the path in T from a to the endpoint of @ near OB(vo, r). Then Xo = 

W(a, Vo) + W(fl, v0) + W~(r), and therefore, 

(8.7) W~(r) - E[X0 [Q] = - E [ W ( a ,  vo) l Q] - E[W(fl, vo) l Q] 

= -E[W(fl ,  v0) I Q]. 

Let t > 5. Note that if s < t, then there are at least two disjoint crossings in T 

of the annulus A(vo, t, r/10) (both on the path Q~ v E 170, which has minimum 

distance to vo). Therefore, Lemma 8.2 gives 

(8.8) P[s < t] ~< O(1)(t/r) c7. 

Fix some y/> 2. By Lemma 8.3, we have 

P[lW(fl ,  vo)] > t, s ) r/y] O (1)exp (-C3t / log y ) logy. 

Hence, using (8.8), 

e[Iw(#,vo)l > t] ~< e[~ < ,-/y] +O(1)exp(-C3t/logy)logy 
<~ O(1)y -C' + O(1)exp(-C~t/logy) logy. 

Assuming that  t ~> 1, we may choose y = expvq, and then get 

P[lW(~,vo)l > t] < o(1)v~exp(-Csv~) ,  

for some constant Cs > 0. This gives E[W(fl,  v0) 2] = O(1). But for every 

random variable Y, we have ElY 2] >/ E[E[Y I Q]2]. Therefore, (8.7) implies 

(8.6) for j = 0. The proof of (8.6) for j = 1 is entirely the same. This completes 

the proof of the proposition. | 

PROPOSITION 8.6: Assuming Conjecture 1.2, ao = 2, where no is the constant 
such that SLE with parameter no is the scaling limit of LERW. 

Proof'. Recall the definition of W~(r), which appears above Proposition 8.5. 

Set ro -- 1/2, and let r l  > 0 be very small. Let r H --~ IJ be the conformal 
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map satisfying r : 0 and r > 0. Let Cy be the circle of radius rj about 

i, j = 0, 1, and set Cj := r Note that Z~(rl) = W~(r:) - W~(ro) is the 

winding number around i of some arc on ~ ,  the LERW from a vertex near i to 

OH in 5Z 2 n ]HI, and the arc has one endpoint near the circle OB(i, to) and the 

other endpoint near the circle OB(i, r:). It follows that Z~(rl) converges weakly 

to a winding number Z(r:) of an arc ~ of r  with endpoints on Co and 

C1, as 5 --+ 0 along some sequence, where ~,~o is the SLE curve with parameter 

ao. Moreover, since we have good tail estimates on Z~(rl) (Lemma 8.3), from 

the dominated convergence theorem it follows that 

E[Z(rl)  2] = lira E[Z~(rl)2]. 
5-40 

Hence, Proposition 8.5 gives E [Z(r:) 2] = 2 log( l / r : )+O(1)x/ log( i / r1) .  Observe 

that  for any path (~ in H - {i}, the winding number of c~ around i minus the 

winding number of r  around 0 is bounded by some constant. Consequently, 

the winding number W ~ of fl' := r around 0 also satisfies 

(8.9) E [W '2] = 2 log(1/rl) + O(1)x/log(1/rl). 

Set tj = logrj ,  j = 0,1, let/~ be the arc ~o(t):  [tl,t0] ~ U, and let IcV be the 

winding number of/~ around 0. By Theorem 7.2, with high probability, the log 

of the absolute value of the endpoints of/~ is not far from the log of the absolute 

value of the endpoints of/3 ~. Therefore, it is easy to conclude with the help of 

Lemma 8.3 that  

(8.10) E[(W - W') :] = O(1). 

We know from Theorem 7.2 again that 

E[W =  olt:l + o(1)v . 

Combining this with (8.9) and (8.10) gives 

(2 - -  /~o)It1] = 0 ( 1 ) ~ .  

Letting tl ~ - o c  now completes the proof. | 

Proof of Theorem 1.3: Immediate from Corollary 6.2 and Proposition 8.7. | 
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9. T h e  c r i t i c a l  v a l u e  fo r  t h e  S L E  

THEOREM 9.1: sup.~ ~ 4, where .~ is as in Definition 7.1. 

Proof: Fix some ~ E ~, and let f t  be the solution of the Lhwner equation with 

parameter  ~(t) = B( -~ t ) ,  where B: [0, oc) -+ OU is Brownian motion star t ing 

from a uniform point  in aU. Note the for every t < 0 the map ft  --1 is well defined 

and injective on 0 U -  {~(0)}, since f t  is a Riemann map onto a slit domain,  and 

the slit hits 0U at  ~(0). Set b(t) := - i  log ft--t(1), with b(0) - B(0) E [0,21r) and 

b(t) continuous in t. (A.s. ~(0) ~ 1, and on this event b(t) is well defined for all 

t < 0.) Then  b(t) is real. As in (7.5), we have 

(9.1) b'(t) = s in (B( -~ t )  - b(t)) = cot ~ ( B ( - ~ t )  - b(t)). 
1 - co s (B( -~ t )  - b(t)) 

Let p(s) = b( - s )  - 8(~s),  and let e > 0. Set T~ = inf{s ~> 0: p(s) = e} and 

T~ = inf{s /> 0: p(s) = ~r}. For x E [e, 7r], let g~(x) be the probabil i ty tha t  

7~ < T~, condit ioned on p(0) = x. Also set g~(x) = 0 for x < e and g~(x) = 1 for 

x > r .  We now show tha t  g~ satisfies 

t~ tt[X ~ (9.2) -~g~ ~ ) + g'~(x) cot (x /2)  = 0 

inside (c, 7r), using Ith's formula. (The reader unfamiliar with stochastic calculus 

can have a look at [Dur84], for example, or t ry  to derive (9.2) directly. The  lat ter  

is a bit tricky, but  can be done.) Observe tha t  g~(p(s*)) is a martingale,  where 

s* = min{s,T~,T~r}. By (9.1), we have 

dp(s) = - b ' ( - s ) d s  - dB(~s) = cot(p(s) /2)ds - dw 

and therefore,  by Ith's Formula (assuming, for the moment ,  tha t  g~ is C2), 

dg~(p(s)) = g',(p(s)) (cot(p(s)/2)  d s - d B ( ~ s ) )  + (1/2)g:'(p(s)) d (B(~s )}  

= (cot(p(s)/2)g' ,(p(s)) + (tc/2)gy (p(s)))  ds - g'~(p(s)) dB(as) 

for s < min{T~,T~}. Since g~(p(s*)) is a martingale, the ds t e rm must  vanish, 

and so (9.2) holds inside (e, ~r). Consequently, in tha t  range, 

g'~(x) = c~ (sin(x/2))--4/~, 

where c~ is some constant  depending on e. Since ge(e) = 0 and g~(~-) = 1, we 

have f [  g~(x) dx -- 1, which gives 

// c :  = (s in(x/2))  
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We know that  a.s. p(s) # 0 for all s, which is equivalent to lim,_~0 g~(x) = 1 on 

(0, 7r). This gives lime-+0 g'~(x) = 0, that is, lim~-~0 c~ = 0. Therefore, n ~< 4. 

This completes the proof, except that we have not shown that  g~ is C 2 (there 

should be a reference implying this, but we have not located one). To deal with 

this, the above procedure is reversed. Def ine  g~ as the solution of (9.2) satisfying 

g~(e) = 0 and g~(1) = 1. Then the above application of ItS's Formula shows that 

g, (p(s*)) is a martingale. By the Optional Sampling Theorem, this implies that  

g~(x) is the probability that 7-~ < T~, conditioned on p(0) = x, and completes the 

proof. | 

CONJECTURE 9.2: ~ = [0,4]. 

10. Properties of  UST subsequential scal ing l imi ts  in two dimensions 

Before we go into the study of the UST scaling limit, let us remark that the 

definition we have adopted for the scaling limit is by no means the only reasonable 

one. There are several other reasonable variations, and choosing one is partly a 

mat ter  of convenience and taste. 

We now recall some definitions. Again, we think of 5Z 2 as a subset of the 

sphere S 2 = R 2 U {oo}. Recall that T~ denotes the UST on 5Z 2, with the point 

oo added, to make it compact. Given two points a, b 6 T~, a # b, W,,b = w~, b 
denotes the unique path in T~ with endpoints a and b. For the case a = b, we set 

Wa,a = {a}. Let T~ be the collection of all triplets, (a, b, W,,b), where a, b 6 T~. 

T~ will be called the paths ensemble of T~. Let I~ denote a random variable in 

7-/(S 2 x S 2 x 7/($2)) whose law is a weak subsequential limit of the law of ~ as 

--4 0. The trunk is defined by 

(10.1) trunk = trunk(T) := U (w - {a,b}). 
(a,b,w)6~ 

Let e 6 (0, 1] and a, b E T~. We define W~,b(e) as follows. Let a' be the first 

point along the path W~,b (which is oriented from a to b) where d(a, a') = e, and 

let b' be the last point along the path where d(b, b') = e, provided that  such points 

exist. If a' and b I exist, and a I appears on the path before b', then let Wa,b(e) be 

the (closed) subarc of W~,b from a' to br; and otherwise set w~,b(e) = O. Let T~(e) 

denote the set of all triplets (a,b, Wa,b(e)) such that a,b 6 T~ and Oga,b(s ) r O. 
Note that  if d(a, b) > 2e, then Wa,b(e) y~ 0. We define 
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Then trunk~(c) is a compact subset of T~, which we call the c - t r u n k  of T~. By 

compactness, for every e E (0, 1] there is a subsequential scaling limit of the law 

of trunk,(e). By passing to a subsequence, if necessary, we assume that  for all 

n C N+ := {1, 2 , . . .}  the weak limit trunk0(1/n) of t runk, ( i /n) ,  as ~ -4 0, exists. 

Recall that  the dua l  T t of a spanning tree T C ~Z 2 is the spanning subgraph 

of the dual graph (~Z~) t := (cV2,~/2) + ~Z 2 containing all edges that  do not 

intersect edges in T. If T is the UST on ~Z ~, then T* has the law of the UST 

on (~Z2) t. (See, e.g., [BLPS98].) Let T~ be T t U {oo}, where T is the UST on 

~Z 2. trunk* and trunkt0(e) are defined for T~ as trunk and trunk0(e) were defined 

for T~. 

We may think of the random variables trunk, trunk t, trunk0(1/n), and 

trunkto(1/n) (n C N+) as defined on the same probability space, by taking a 

subsequential limit of the joint distribution of ~ ,  T~, (trunk6(1/n): n E l~+), 
and (trunkta(1/n): n e N+). It is immediate to verify that a.s. 

trunk= U trunko(1/n), 
hEN+ 

and trunk0(1/(n + 1)) D trunk0(1/n) for n �9 N+. 

We shall prove that  trunk is a.s. a topological tree, in the sense of the following 

definition. 

De~nition 10.1: Trees. An a rc  joining two points x, y in a metric space X is a 

set J C X such that  there is a homeomorphism r [0, 1] -4 J with r = x and 

r = y. A metric space X will be called a t opo log ica l  t r e e  if it is uniquely 

arcwise connected (that is, given x ~ y in X there is a unique arc in X joining x 

and y) and locally arcwise connected (that is, whenever x �9 U and U is an open 

subset of X there is an open W C U with x �9 W and W is arcwise connected). 

A f in i te  t opo log i ca l  t r e e  is a topological space which is homeomorphic to a 

finite, connected, simply connected, 1-dimensional simplicial complex. 

Note that  a connected subset of a topological tree is a topological tree [Bow]. 

Although we shall not need this fact, it is instructive to note that  a metric 

space which is a topological tree is homeomorphic to an ]R-tree 4 [MO90] (see also 

[MMOT92], for a slightly less general but simpler proof). 

The next theorem establishes a finiteness property of the c-trunks, which is the 

first step in the proof of Theorem 1.6. 

4 An R-tree is a metric space (T, d) such that for every two distinct points x, y E T 
there is a unique isometry r from [0, d(x, y)] onto a subset of T satisfying r -= x 
and r y)) = y. 
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THEOREM 10.2 (Finiteness): For every e > 0 there is a "5 > 0 with the following 

property. Suppose that 0 < 5 < "~. Let V be a set of vertices of 5Z 2 such that 

every point in S 2 is within distance ~ of some vertex in V. Let Q := Q~(V) be 

the subtree of T~ that is spanned by V, that is, the minimal connected subset of 

T~ containing V. Then with probability at least 1 - c we have Q D trunk,(c). 

Proof." Fix some small 5 > 0, and suppose that 5 �9 (0, 5). Let Vo := V, and for 

each j �9 N+ let Vj be a set of vertices containing Vj_I such that  every vertex 

of 5Z 2 is within spherical distance 5j := 2-J~ of some vertex in Vj, and Vj is 

a minimal set satisfying these properties. Note that the number of vertices in 

Vj - Vj-1 is bounded by O(1)5~ -2. Let Qj be the subtree of T~ spanned by Vj. 

We now estimate the probability that there is some component of Q j+l - Qj 

whose diameter is large. Let v be some vertex in 5Z 2, let Q(v, j) be the arc of T~ 

that connects v to Qj, and let/9(v, j, a) be the event the diameter of Q(v, j)  is at 

least abj. By Wilson's algorithm, we may obtain Q(v,j)  by conditioning on Qj 

and loop-erasing a simple random walk from v that stops when Qj is hit. Every 

vertex w �9 5Z 2 is within distance 5j from a vertex in Qj. Since Qj is connected 

and has diameter at least 1, Lemma 2.1 shows that there is a universal constant 

Co > 0 so that  the probability that a random walk from w gets to distance C05j 

from w before hitting Qj is at most 1/2. Consequently,/)(v, j, a) has probability 

at most O(1)exp(-Cla),  where C1 > 0 is an absolute constant. We choose 

aj := j2(log'~)2/C1. Since there are at most O(1)5~ -2 vertices in Vj+I - Vj, we 

find that the probability of 

oO 

v := U U 
j = l  vcV~+l 

is bounded by 
o o  

O(1)~ "-2 ~ 22Jexp(-j2(l~ 
j = l  

which goes to zero as ~--+ 0. 

Let v E 5Z 2. There is a sequence Vl, v2 , . . . ,  v,~ with vj E Vj such that  Q(v, 1) c 

Uj~=2 Q (v j, j - 1), and the latter union is connected. If we are in the complement 
(20 

o f / ) ,  it follows that  the diameter of Q(v, 1) is at most s :-- ~-'~j=l ajbj. Since 

s --+ 0 as 50 -~ 0, this establishes the theorem. | 

Several corollaries follow from this theorem. 
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COROLLARY 10.3: For each n E N+, a.s. trunk0(1/n) is a finite topological tree. 

Proof'. Let W C R2 be finite. For each w E W and & > 0, let w~ E &Z 2 be closest 

to w, with ties broken arbitrarily, and set W~ = {w~: w E W}. Let Q~(W) be the 

subtree of T~ spanned by W~. The theorem shows that  we may choose a finite 

W C ]~2 such that  t runk , ( i /n )  C Q~(W) with probability at least 1 - e ,  for every 

sufficiently small ~ > 0. Consequently, we may couple a subsequential scaling 

limit Q(W) of Q~(W) as ~ --+ 0 so that  trunk0(1/n) C Q(W) with probability 

at least 1 - e. Because trunk0(1/n) is connected and e is an arbitrary positive 

number, it suffices to prove that  Q(W) is a.s. a finite tree. The latter is easily 

proved by induction on [W[ using Theorem 1.1, Wilson's algorithm, and the 

following easy fact: the tree spanned by a subset of the points in W is unlikely 

to pass close by to the other points. (See Remark 3.2.) | 

COROLLARY 10.4: The Hausdorff dimension of trunk is in (1, 2). Moreover, if 

I = (so, Sl] is an interval such that a.s. the Hausdorff dimension of any scaling 

limit of LERW is in I, then the Hausdorff dimension of trunk(~:) is in I. 

Proo~ The second statement follows immediately from Theorem 10.2. The first 

is now a consequence of the result of [ABNW], showing that  there are so, sl E 

(1, 2) such that  a.s. the Hausdorff dimension of LERW scaling limit is in [so, Sl]. 5 
| 

Remark  10.5: The above-mentioned lower bound in [ABNW] is based on the 

ideas of [BJPP97]. Kenyon [Ken] can prove that  we may take Sl -- 5/4. In 

earlier work [Ken98b] he showed that  n 5/4 times the expected number of edges 

in a LERW from (0, 0) to the boundary of the square [ -n ,  n] 2 tends to a finite 

positive constant as n --+ co. This supports the conjecture that  the Hausdorff 

dimension of the scaling limit of LERW is a.s. 5/4, and the same would apply to 

trunk(~). 

The d e g r e e  of a point p in a topological tree T is the number of connected 

components of T - {p}. The following corollary is a strong form of the statement 

that  the maximum degree of points in trunko(1/n) is 3. From this and the fact 

that  trunk is a tree (which we prove further below) it immediately follows that  the 

5 From Remark 3.2 follows the weaker result that the area measure of any subse- 
quential scaling limit of LERW is zero, hence that the area of trunk is zero. It 
is likely that with a bit more effort the proof of Remark 3.2 is sufficient for the 
stronger claim that the Hausdorff dimension is smaller than 2. 
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maximum degree in trunk is 3, because every finite subset of trunk is contained 

in some trunko(1/n). 

Given a point p E S 2 and two numbers 0 < rl  < r2 < 1, let Asp(p, rl ,r2) 

denote the annulus with center p, inner radius r l ,  and outer radius r2, in the 

spherical metric. 

COROLLARY 10.6: Given every c E (0, 1), there is an r E (0, c) with the following 

property. For every sufficiently small 5 > 0, the probability that there is a 

point p E S 2 such that there are 4 disjoint crossings in trunk~(c) of the annulus 

Asp(p, r, c) is at most c. 

By having 4 disjoint crossings in tmnk~(c) of an annulus A, we mean that there 

are 4 disjoint connected subsets of tmnk~(c) A A that intersect both boundary 

components of A. Below, Corollary 10.11 gives a strengthening of Corollary 

10.16. 

Proof." By Theorem 10.2, it is enough to prove the statement with Q~(W) 

replacing trunk6(c), where W C ]~2 is a set of bounded size, provided that the 

value of r does not depend on 5. Again, induction on [W I can be used together 

with Wilson's algorithm. One needs note the following easy facts. The tree Tk-1 

spanned by k - 1 points of W is unlikely to pass close to the other points of W, 

and when adding a further point, it is unlikely that the attachment point of the 

new branch on Tk-1 will be close to another branch point. Also, once a random 

walk from the new point gets close to Tk-1 it will hit Tk-1 close by, with high 

likelihood. The easy details are left to the reader. II 

We now turn to the central issue in the proof of Theorem 1.6, which is, 

THEOREM 10.7: In any subsequential scaling limit of UST in S 2, a.s. the trunk 

and dual trunk do not intersect. 

LEMMA 10.8: Given 5, e > O, let T~ (c) be the set of points of degree 3 in trunk~(e). 
Let trunk,(e) be the e-trunk of the dual tree T~. Let D be the spherical distance 

from T3(c) to trunk,(e), that is, the least spherical distance between a point in 

T~(e) to a point in trunk~(e). Then limt-,0 P[D < t] -+ 0 uniformly in 5. 

The following simple observation is used in the proof. Suppose that we condi- 

tion on a set of edges S to appear in the UST tree in a planar graph. For the dual 

tree, this is the same as deleting the edges dual to the edges in S. Consequently, 

one can perform a variation on Wilson's algorithm for a planar graph, where 

one switches back and forth from building the tree by adding LERW branches 
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and building the dual tree. When building the tree, the LERW acts with the 

constructed tree as a wired absorbing boundary and the constructed dual tree as 

a free boundary, and conversely when building the dual tree. 

Proof." We first choose a large but finite collection of points Q in 5Z 2 so that  

with high probability the subtree T of T~ spanned by Q contains trunk,(e) (and 

IQI does not depend on 6). This can be done, by Theorem 10.2. Let Qt be a set 

of vertices of the dual graph (~Z2) t, such that with high probability the subtree 

T t spanned by Qt in the dual graph contains trunk,(e). Let al,a2, a3 E Q and 
t t Qt al,  a 2 E be distinct points. It suffices to show that the probability that the arc 

/3 joining a~ and a~ in T t comes within distance t of the meeting point m of al,  a2 

and a3 in T goes to zero as t --+ 0, uniformly in 6. This is easy. We condition 

on the subtree To of T spanned by al,  a2, a3. Let z t be a dual vertex close to a~. 

Then with high probability the dual tree path/3 from z t to a~ has diameter not 

much larger than the distance from z t to a~. In particular, it does not go close to 

To. By the next lemma, conditioned on/3 and To, the probability that a simple 

random walk starting at a~, with To acting as a reflecting boundary, will get to 

within distance t of m before hitting/3 tends to zero with t. Consequently, the 

same is true for the loop-erasure of this walk, which can be taken as the path 

joining/3 and a~ in the dual tree. II 

A simple random walk on 5Z 2 is likely to hit a connected subgraph of fixed 

diameter> 0 before visiting a specified vertex at fixed positive distance away. 
The next lemma gives a uniform version of this statement, in a slightly more 

general setting, where there is also a reflecting boundary. 

LEMMA 10.9: Let D be a domain in S 2 such that S 2 - D has two connected com- 

ponents, B1, B2, and assume that neither is a single point. Consider a sequence 

5j, j E N, of positive numbers tending to zero. Suppose that to each j E N there 
J J 5jZ 2, and that " B1 and are two connected subgraphs B1, B 2 of the grid B~ --+ 

BJ2 --4 B2 in the Hausdorff metric on compact subsets ors  2. Let m E B2 be some 

point, and for each t > 0 and z E 5jZ 2 - B~, let h j (z , t )  be the probability that 

simple random walk on ~jZ 2 - B~ starting at z (with reflecting boundary condi- 

tions on B~) will get to within distance t of m before hitting BI .  Let K C S 2 - B 2  

be compact. Then 

lim sup{hi(z, t): z E K ~ 5jZ 2 } = O. 
t--40 

j--4oo 

Proof'. Set Gj := ~jZ 2 - B~, let S(t) be the vertices of Gj that  are within 

distance t from m, and let Vj (t) be the set of vertices of Gj - B~ - S(t) .  Then 
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hi(z, t) is discrete-harmonic in Vj(t). Recall that the Dirichlet energy of hi(z, t) 
is ~(h j ( z , t )  - hj(z',t)) 2, with the sum extending over all edges [z, z'] in Gj. 
Let A = ~j be the minimum of hj(z,t) on K,  and let z be where the minimum is 

achieved. Then there is a path 13 from z to S(t) such that hj(z,t) >1 )~ on 13, by 

the maximum principle for discrete harmonic functions. Note that  one can find 

a collection of at least 1/(cSj) disjoint paths in Gj which join B~ and/3 and each 

path in the collection has combinatorial length bounded by c/6j, where c < cc 

depends only on K and D. The Dirichlet energy of hj(z,t) restricted to each 

such path is at least A/Sj times a positive constant, and therefore the Dirichlet 

energy of hj(z, t) is at least CA, where C > 0 is a constant depending only on K 

and D. 

Let dj be the distance from m to B~. Since hj(z,t) is harmonic in Vj(t), it 

minimizes the Dirichlet energy among functions on Gj that are 1 on S(t) and 0 

on B~. Therefore, the Dirichlet energy of hj (z, t) is at most the Dirichlet energy 

of the function f :  Gj --4 R, which is 1 on S(t), 0 outside of S(dj), and equal to 

log(dj / Iz -  ml)/log(dj/t  ) elsewhere, which is O(1)/log(dj/t), as j -~ c~. This 

gives, )~j = O(1) / log(d j / t ) ,  and the lemma follows. | 

Proof of Theorem 10.7: Before we go into the actual details, the overall plan 

of the proof will be given (in a somewhat imprecise manner). Let to > 0. It 

is not hard to reduce the theorem to the claim that with probability close to 

1 the path 7 C T6 which joins two fixed points al,  a2 does not have points p 

close to it such that  the path O~p C T5 joining p to 7 is not contained in a small 

neighborhood of 3'. Let Z be the set of points p such that ap does not stay close 

to 7. When we condition on 7, the probability that p E Z goes to zero as p tends 

to a point in 7, by a simple harmonic measure estimate. However, this is not 

enough, since there are many different p's close to 7. We fix some collection L1 of 

points close to 7, and take a thick collection of points L2 which are much closer 

to 7. What  we show is that  conditioned on 7 and on Z n L2 ~ 0, the expectation 

of N := I Z n Lll is much larger than E[N I 7]. This is established by observing 

that  when p E L1 N Z is appropriately chosen, the expected number of points 

p~ E L2 such that  ap, is contained in ap, except for a small initial segment of ap,, 

is quite large. It follows that  

E[N 1 7] 
P [Z  N L2 # 0 I 7] <~ E[NIT, ZNLI#0] 

is small, which suffices to prove the theorem. 

We now give the details. Fix four distinct points al, a2, bl, b2 E R 2. Given 

6 > 0, let a t and a~ be points of 6Z 2 that are closest to ax and a2, respectively, 
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and let b~ and b~ be vertices of the grid dual to ~Z 2 that are closest to bl and 

b2, respectively. Let 9' be the path in T5 that joins a t and aS, and given any 

p E ~Z 2, let ap denote the path in T5 from p to 9'. Let ~ be the path of T~ that  

joins b~ and b~. 

Since t runk  = U , ~ t r u n k o ( I / n ) ,  and t runk  t = Untrunkto(I/n), Theorem 10.2 

shows that it suffices to prove that the probability that the distance between 9' 

and ~ is less than t goes to zero, as t goes down to zero, uniformly in 5. We 

know that  with probability close to one, ~ does not come close to {al, as}, and 9' 

does not come close to {bl, b2} (Remark 3.2). Therefore, we need only consider 

the situation where there is a point q on % which is close to ~, but not close 

to {al, a2, bl, b2}. Since ~ and 9' cannot cross, and since ~ locally separates the 

sphere near every point of ~ - {b~, b~}, such a situation implies that there is a 

point ql in 5Z 2, which is near q, but in order to get to 9' from q~ one must either 

cross ~, or go "around" it. Consequently, diam (aq,) must be bounded away from 

zero, as aq, cannot cross ~. It therefore suffices to rule out the existence of a 

point q' E 5Z 2 close to 9' but with diam(aq,) bounded away from zero. More 

precisely, let K be a compact set disjoint from {al,a2}, and let el E (0, 1). Let 

be the least distance from 9' to some point q~ E KMSZ 2 such that diam (aq,)/> el. 

It suffices to show that 

(10.2) inf l imsupP[h < h0] = 0. 
ho>0 5-+0 

Given any p E 5Z : ,  let h(p) be the distance from p to 9' and let k(p) be the 
maximal distance from a point on C~p to 9'. By Corollary 10.6, the probability 

that  there is an arc c~ in 75, which is disjoint from 9', satisfies diam(a) ~> el, and 

every point of a is within distance t of % goes to zero as t --+ 0, uniformly in 5. 

Hence, to prove (10.2), it suffices to establish that 

(10.3) Yt > 0 inf l imsupP[3p E K N 5Z 2 h(p) < h0, k(p) ~> t] = 0. 
ho>0 5-+0 

Since the proof is somewhat involved, we consider first the simpler situation in 

which 

(10.4) 9' = [0, 1] x {0}, and K = [1/3, 2/3] x [0, 1] 

(notwithstanding that this is an unrealistic situation, of extremely low probabil- 

ity). Obviously, it suffices to prove (10.3) for small t > 0. 

In the following arguments, several small positive quantities appear. Their 

dependence differs from the natural flow of the proof. In order to make it clear 
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that the proof is logically sound, we state now that the dependence order is as 

follows: 

e0, to, r0, tl,  hi, rl ,  h2, (~ ; 

that  is, each of these quantities may depend only on those appearing before it in 

the list, and should be thought of as much smaller than its predecessors. 

Set h~ := max{k6: k E Z, k5 <~ hi}, and let 

Li := {(kh, h'l): k E Z, 1/6 < k5 < 5/6}. 

Given ~, and p E 5Z 2, we may choose an by loop-erasing a simple random walk 

from p to % Consequently, an easy harmonic measure estimate shows that 

P[k(p) > t] = O(hi/t) for all p E L1. 

Set h~ := max{kS: k E Z, k5 ~< h2}, and 

L2 := {(kh, h~): k E Z, 1/4 < k5 < 3/4}. 

Again, for all p E L2, P[k(p) >/ to] = O(h2/to), so we may assume that the 

event Q that  the leftmost point in L2 satisfies k(p) < to has probability at least 

1 - e0. Let E be the event that there is some p E L2 with k(p) >1 to, and let 

)E' := )EN Q. For proving (10.3) in the simpler situation (10.4), it suffices to show 

that P[/C'] = O(e0) for all sufficiently small 5 > 0. 

Consider the following procedure for generating T~ given 7. Perform Wilson's 

algorithm starting with the vertices in L2, in left-to-right order. If we encounter 

in this procedure some vertex p E L2 such that k(p) >1 to, we stop, and let P0 
denote that  vertex. Let To be the tree constructed up to that point (including 

apo ). On the event E',  let Pl be the first point on apo whose distance to ~, is at 

least to, and let c~ be the arc of apo from P0 to Pl. Let `4i be the event that  c~ is 

not contained in the rectangle [1/5, 4/5] x [0, to]. Note that ,41 implies that  there 

is an arc in a N ([1/5, 4/5] x [0, to]) with diameter at least 1/15. By considering 

this arc and % Corollary 10.6 shows that  P[,41 F1 )E'] < e0, assuming that  to is 

sufficiently small. 

On the event )E' - ,4i, let 

X 1 := max{x  �9 R: (x, h i / 2  ) �9 o~}, 

let U be the component o f R  2 - ( a U  ([xi,co) x {hl /2})U (R x {tl})) that  

contains (Xl, co) x {hi/2}, and let U' be the set of points in U that  are within 

distance ti from a. See Figure 10.1. Let A2 be the event that )E' - .41 occurs 

and U' intersects To. 



274 O. SCHRAMM Isr. J. Math. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t l  

..................... i I:- . . . . . . . . . . . . . . . . .  hi/2 

To 

o 
Xl  

Figure lO.l. 

We now prove that  P[/E - ,41 - .42] = O(e0). Let N be the number of points 

p E L1 such that  k(p) ) to. For a given p �9 L1, the probability of k(p) /> to 

(given (10.4), but otherwise unconditioned) is O(hl/to). Therefore, 

(10.5) E[N] ~< O(1)hl/(6to). 

On the other hand, condition on the event/E '- .41 - .42 and on To. Let L~ be the 

set of p �9 L1 A U such that  the distance from p to ~ is at most tl/2. Note that  

conditioned on p �9 L~, the probability that C~p joins with apo within distance 2tl 
from p is at least 

(10.6) O(1)_1 hi 
dist(p, a) + h i '  

since after generating To, we may continue by running Wilson's algorithm starting 

at p, and the probability that  the random walk starting at p will hit a before the 

ray (xl,oo) x {hl/2} is at least (10.6). It therefore follows that  conditioned on 

/C - .41 - .42, we have 

E lY ]/E - .41 - .42] >/O(1) -1 y~{hl/(k6): k �9 Z, hi <. k6 <. tl/2} 
>/0(i)-'6-Ihi log(tl/(2hl)). 

Combining this with (10.5) gives 

E[N] 
P [ K : -  . 4 1 -  .42] ~< E[N i K: - . 4 1 -  .42] < O(1)(t~176 -1 <~ co, 
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provided that  hi is sufficiently small. 

It remains to establish that P[A2] ~< O(e0). First consider the case that there 

is some p E L2, to the left of P0, such that ap n U ~ ~. Then this must be the 

case for p being the left neighbor of Po, namely p = p~ := po - (5, 0), because 

when p C L2 is to the left of p~, the path ap cannot cross apo U [Po, P~o] U ap'o, 
and ap does not get to R x {to}. If ap~, intersects U, then C~p~ must first get to 

some point z in [xl,c~) x {hl/2}. Near z there must be two points z~,z~, which 

are vertices of the dual grid (SZ 2)t, and are locally separated from each other by 

a~o. The path in the dual tree that joins z~ and z2 t has to contain the edge dual 

to the edge [P~,Po]. Now consider another dual vertex z3 t just left of a near the 

point (xl,hl/2).  Let m t be the meeting point of z~,z~ and z~ in the dual tree. 

If m t is not within distance rl  of p0, we get in the rl/lO t runk of the dual tree 

at least four disjoint crossings of the annulus A(po, 2h2, rl/2). We may assume 

that this has probability ~< c0, by Corollary 10.6. Similarly, Lemma 10.8, with 

the role of the tree and dual tree reversed, shows that we may take the event 

that  m t is within distance rl  of Po to have probability ~< co, provided that r l  is 

sufficiently small when compared with hi. 

To establish that  P[A2] ~< O(c0), it now suffices to prove that on the event 

Er _ .A1, the probability that apo intersects U' is O(co). The argument is similar 

here, but occurs on a larger scale. Suppose that w C C~po N U'. Then w must be 

on the segment of O/po from Pl to the point P2 in O~po N ~ .  Because w E Otpo --  OL and 

w is within distance tl  to c~, there is a point near w that is in the (t0/2)-trunk 

of the dual tree, namely, some point on the path connecting dual two vertices 

on opposite sides of C~po near Pl. Consequently, by Lemma 10.8, we may rule 

out the possibility that  P2 is within distance r0 of w as having small probability, 

since P2 is a point of degree 3 of the (t0/2)-trunk. But if the distance between P2 

and w is more than r0, then there are in the (t0/2)-trunk at least four disjoint 

crossings of the annulus A(w,2tl,ro): two on apo and two on 7- An appeal to 

Corollary 10.6 now establishes P[A2] ~ O(c0). This completes the proof in the 

situation (10.4). 

We now explain how to modify the above proof to deal with the general case. 

First note that  the restriction on K is entirely inconsequential; we could in the 

same way deal with any compact set disjoint from the endpoints of ~,. More 

significant is the special selection of V. Observe that under the assumption of 

conformal invariance of the LERW scaling limit, the general case can be reduced 

to the case where 7 = [0, 1] x {0}, because after ~, is generated, the rest of the 

UST is just unconditioned UST on the complement of 7 with wired boundary 
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conditions. We may then transform 7 by a conformal homeomorphism to 

[0, 1] x {0}, and refer to the above result. 

Although we do not assume conformal invariance of the scaling limit, it turns 

out that the proof above is itself conformally invariant. With some care, one can 

apply the conformal map to the proof, in a manner of speaking. This is actually 

not very surprising, because the proof is ultimately based on a simple (discrete) 

harmonic measure estimate, which is conformally invariant. 

Let us turn to the details. We may couple the UST for a subsequence of 

tending to zero so that 3' tends to some path 70 as 5 --+ 0 along that subsequence 

(see the discussion of the Prohorov metric in Section 2). Let 

fa: S 2 - ([0, 1] x {0}) --+ S 2 - 7 

be the conformal map normalized to take the endpoints of [0, 1] x {0} to the 

endpoints of 3' and so that fa(cc) is on the line which is the set of points at equal 

distance from both endpoints of 7, say. (The latter normalization is necessary 

to make fa unique, but otherwise, it is quite arbitrary.) It follows that f~ tends 

to the similarly normalized conformal map f :  S 2 - ([0, 1] x {0}) -+ S 2 - ~'0. We 

may assume that (i is so small that f and f~ are very close on compact subsets 

disjoint from [0, 1] x {0). 

For each p E L1, where L1 is as before, we let i~ denote a point in 5Z 2 that 

is closest to f(p). For the general case, we consider/V, the number of p E L1 

such that  k(~) is not small, in place of N. Let L2 denote the set of points in (fZ 2 

that are within distance 35 of f([1/4,3/4] x {h2}). The proof for the general 

case uses L2 in place of L2. For traversing L1, there is no clear notion of the 

left-right order. But any ordering that starts near f ( (1 /4 ,  h2)), and later does 

not visit any vertex before visiting an immediate neighbor, will do. Instead of 

the left neighbor p~ of a vertex P0 E L1, we use for P0 E L1 that neighbor of 

P'0 in L1 that  is "most counterclockwise", in the appropriate sense. The rest of 

the proof proceeds with essentially no modifications, except that  the coordinate 

system used is transformed by f .  I 

Remark 10.10: In [BLPS98] it has been asked whether the free USF on every 

planar proper bounded degree graph is a tree. The proof of Theorem 10.7 seems 

to be relevant. It is plausible that with a similar argument one can prove that 

for proper planar graphs with bounded degree and a bounded number of sides 

per face, the free USF is a tree. 

We may now strengthen Corollary 10.6, as follows 
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COROLLARY 10.11: Given every e E (0,1), there is an r E (O,e) with the 

following property. For every sufticiently small ~ > O, the probability that there 

is a point p E S 2 such that there are 4 disjoint crossings in T~ of the annulus 

Asp(p, r, e) is at most e. 

Proof: Consider an annulus A = Asp(p,r,e), and suppose that there are four 

disjoint paths OLo,o~l,Ot2,o~3 in T~ that cross it. Let B1 be the component of 

S 2 - A inside the inner boundary component of A, and let B2 be the outside 

component. Without loss of generality, we suppose that a0 tA a2 separate a l  

from a3 inside A, that  is, the circular order of these paths around A agrees with 

the order of the indices. 

Assume first that there are no paths in T~ n A that join two of the paths aj,  

j = 0, 1, 2, 3. Then there must be paths in the dual tree t30, ~1, ~2,133, such that 

t3j is between aj -1  and aj (indices mod 4), for each j -- 0, 1, 2, 3. If a0, a l ,  a2 

and ~3 can all be connected to each other by paths in AUB1, it follows that there 

are four crossings of the annulus Asp (p,r,e/3) in the e/3 trunk of T~, and we 

know that  has small probability to happen anywhere, if r is small, by Corollary 

10.6. If neither of the paths a j  connects to another in AU B1, the same argument 

applies to the dual tree, because the paths ~j must all connect inside A U B1. 

However, if two of the paths a j  connect in A U B1, and one of the others does 

not connect to them, then also two of the paths 13j connect. This implies that 

the e/3 trunk gets within distance of r from the dual trunk, and again this can 

be discarded as having small likelihood. 

We are left to deal with the situation where there is a simple path "), in A N T~ 

that  connects two of the paths aj. Note that for each pair of paths a j  there can 

be at most one such -), connecting them. Also note that any path connecting aj 

and Olj.b2 (indices mod 4) must cross either a j+l  or aj+a. Consequently, if we 

consider any four concentric annuli Aj := Asp(p, r j ,r j+l) ,  j = 0, 1,2, 3,4, with 

rj < rj+l for each j = 0, 1,2,3,4, r0 = r, and r5 = e, at least one of them will 

have the property that inside it there is no path joining any two paths among 

the aj 's .  This allows a reduction to the previous case, and completes the proof. 
| 

THEOREM 10.12: A.s., every simple path r [0, 1) --+ trunk has a limit l imt~l r 

in S 2, and for every point z E S 2 there is a simple path r [0, 1) ~ trunk such 

that limt--,1 r = z. 

Proof: Suppose that  there are two distinct accumulation points, x and y, of 

r as t --+ 1, and let m E N+ satisfy dsp(X, y) > 9/m.  Then for each t E (0, 1) 
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the (spherical) diameter of r 1)) is greater than 9/m. Let a e (0, 1) be such 

that  the diameter of r is at least 5/m. It easily follows that  r 1)) C 

trunko(1/m). But since trunk0(1/m) is a compact finite tree (Corollary 10.3), and 

the restriction of r to [a, 1) is in trunko(1/m), it follows that limt_~l r exists. 

Contradiction. 

Let z E S 2 and z ~ E trunk0(1), z t ~ z. We want to produce a simple path 

~/ C trunk starting at z t and tending to z. If z E trunk, then z E trunko(1/n) 

for some n E N+, and the existence of ~ is clear. So suppose that z ~ trunk. 

For each n E N+, there is a point zn E trunko(1/n) which is within distance 

2In from z. Let fl,~ be the arc from z' to zn in trunk0(1/n). For each n and 

m, the intersection % M trunko(1/m) is a simple path. Since trunko(1/m) is a 

compact finite topological tree, there is a subsequence ~,~j such that  for each m 

the Hausdorffiimit limj (~nj Mtrunk0(1/m)) exists, and is a simple path. Because 

% - B(z, 3/m) C trunk0(1/m) when n/> m, it now follows that ~/:= limj ~ is 

a simple path. Moreover, it is clear that z E ~' and ~ - {z} C trunk. I 

Proof of Theorem 1.6: We first prove that trunk is a topological tree. Clearly, the 

trunk is arcwise connected, since trunk := [-L trunko(1/n), and each trunk0(1/n) 

is arcwise connected. It is also clear that  the trunk is dense in S 2. Let x, y E trunk. 

Then there is some n E N such that  x,y E trunk0(1/n), and there is a unique 

arc 71 joining x and y in trunk0(1/n). Let ~2 be an arc joining x and y in trunk. 

Since the dual t runk is dense, it must intersect all connected components of 

S 2 -(')'1 U'/2). Since the dual trunk is disjoint from the trunk, it does not intersect 

"Yl U")'2. Because the dual trunk is connected, it now follows that S 2 - (~1 U ~/2) is 

connected. Consequently, "~1 = ~/2, and the trunk is uniquely arcwise connected. 

Let n E N and let t be the spherical distance between trunk0(1/n) and 

trunk?0(1/n). Since these are compact and disjoint, t > 0. If x E trunk0(1/n) and 

there is a y E trunk such that there is no path in trunk M B(x, 3/n) 
joining x and y, then there must be a path in trunkto(1/n) separating x and 

y in B(x, 1/n). (Indeed, if ~, is the path joining x and y and p E ~' - B(x,3/n), 
then the path ]~ C trunk t connecting two points p~ and p~ that are near p and 

are separated from each other by ~ near p, will have a subarc in trunkCo(1/n) 

separating x and y in B(x, l /n ) . )  Consequently, for every point x E trunko(1/n) 

and every y e trunk M B(x, t) M B(x, 1/n) there is a path in trunk M B(x, 3/n) 
joining x and y. Hence, the union of all arcs that contain x and are contained 

in trunk M B(x, 3In) is an arcwise connected subset of trunk M B(x, 3/n) which 

contains trunk M B(x, t) M B(x, l/n). This implies that trunk is locally arcwise 

connected, and so it is a topological tree. It is obviously dense in $2, and the 
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proof of part  (iii) is complete. 

It is clear that  for every a, b E $2 there is some w such that  (a, b, w) E ~:. 

Let T(e) be a subsequential scaling limit of ~ ( e ) .  We prove that  a.s. every 

w such that  (a, b, w) E ~(c) for some a, b E S 2 is a simple path. Let el > 0. It 

suffices to prove that  the above statement holds with probability at least 1 - Cl. 

Let V1 C S 2 be a finite set of points, and for each 5 > 0 let V[ be a collection of 

vertices of 5Z 2 , each close to one point of V1, and with IVll = IVI~I. By Theorem 

10.2, V1 may be chosen so that with probability at least 1 - el the subtree of T~ 

spanned by V[ contains trunk~(e), for all sufficiently small 5. This implies that  

each w,~,b(e) is a subarc of w~,u for some v, u E V1 ~. Because for every pair of 

points v, u E V1 the scaling limit of the LERW from v to u is a simple path, it 

follows that  with probability at least 1 - el for each (a, b, w) E ~(c), w is a simple 

path. 

We may now conclude that  a.s. fcr every (a, b, w) E T, the set 

- { )  u 

is a 1-manifold, that is, a disjoint union of simple paths. Therefore, wt := 

w - {a, b} is a 1-manifold. This means that each component of w' is an arc 

with endpoints in {a, b}. It is clear that w may be oriented as a path from a to b. 

Suppose that  w visits a more than once. If a r b, it then follows that a E trunk, 

and there is a simple closed path in trunk containing a. This is impossible, since 

trunk is a topological tree. Hence a, and similarly b, are each visited only once in 

w, which implies that w is a simple path if a r b. If a = b, the only possibility is 

that  w = {a} or that  w is a simple closed path. This proves the first and second 

statements in (ii). 

Observe that  if there is simple curve c~ C trunk such that  ~ = a U {a}, then 

a must be in the dual trunk, for the dual trunk is connected, intersects both 

components of S 2 - ~ ,  and is disjoint from trunk. This is a rare event, by Remark 

3.2 (or Corollary 10.4). This proves (ii). 

Corollary 10.11 proves (iv). 

The first claim in (i) is obvious. Suppose that a r b are such that  there are 

two sets w and w ~ with (a, b, w), (a, b, w ~) E T. We know that  w and w' are simple 

paths. If w r w t, then there is a simple closed path, say 7, contained in ~ t3 ~ .  

But as above, 7 must intersect the dual trunk, since the dual trunk is connected 

and dense. This implies that  a or b are in the dual trunk. This completes the 

proof of (i), and of the theorem. | 



280 O. SCHRAMM Isr. J. Math. 

Remark 10.13: Uniqueness of paths. We have seen in the above proof that the 

path in trunk from a to b is unique when {a, b} Ntrunk f = 0. The converse is also 

easily established. 

Remark 10.14 (Reconstructing trunk?): It can be shown that the scaling limit 

dual trunk can be reconstructed from the trunk. This can be seen from Remark 

10.13. Another description of the dual trunk from the trunk is as follows. Given 

distinct x ,y  E S 2 - -  trunk, let 7(x,y)  be the (unique) arc in S 2 - trunk with 

endpoints x, y. Then 

trunk t = U { l ' ( x , y ) -  {x,y}:  x # y,x,y E S 2 - t runk} .  

To prove this, it suffices to establish that ?(x, y) is unique, which follows from 

the fact that  trunk is connected and dense. 

Remark 10.15: Consider the metric d* on trunk, where d*(x, y) is the Spherical 

diameter of the unique (possibly degenerate) arc joining x and y in trunk. Since 

trunk is locally arcwise connected, this new metric on trunk is compatible with 

the topology of trunk as a subset of S 2. Let trunk, denote the completion of this 

metric. Then trunk, is a compact topological tree, and is naturally homeomorphic 

with the ends compactification of trunk. Since d* majorizes the spherical metric, 

there is a natural projection ~r: trunk, --~ S 2, whose restriction to trunk is the 

identity. It is easy to see that every point p E S 2 - trunk t has a unique preimage 

under r ,  and for points p E trunk f, the degree o fp  in trunk t is equal to 17r-l(p)]. 

Consider some o E $2, and let T ~ be the appropriate "slice" of ~, that is, 

T ~ : -  {(b,w): (o,b,w) E ~}. One can show that if o ~ trunk t, then T ~ is 

homeomorphic with trunk,, and 7r: T ~ --+ S 2 is the projection onto the first 

coordinate, when ~:o is identified with trunk, through this homeomorphism. 

11. Free and wired  t runks  and conformal  invariance 

We now want to give a precise formulation to a conformal invariance conjec- 

ture for the UST scaling limit, and prove that it follows from the conjectured 

conformal invariance of the LERW scaling limit. (Such conformal invariance 

conjectures seem to be floating in the air these days, with roots in the physics 

community.) The conformal automorphisms of S 2 are M5bius transformations. 

We conjecture that the different notions of scaling limits of UST in S 2, which 

were introduced in the previous section, exist (without a need to pass to a subse- 

quence) and are invariant under MSbius transformations. Moreover, the scaling 

limits in subdomains D C S 2 should be invariant under conformal homeomor- 

phisms f :  D -~ D'  C S 2. This is a significantly stronger statement, since the 
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Mhbius transformations of S 2 form a 6-dimensional group, while the space of 

conformal homeomorphisms from the unit disk onto subdomains of S 2 is infinite 

dimensional. 

To formulate more precisely the invariance under conformal homeomorphisms 

of subdomains f :  D -~ D', we need first to discuss UST scaling limits in subdo- 

mains of S 2. This will be now explained. 

For simplicity, we restrict our attention to simply connected domains D c R2 

whose boundary OD is a simple closed path. Let Po E D be some basepoint. Let 

FT D be the uniform spanning tree of G(D, 6), with free boundary conditions, and 

let WT~ be the uniform spanning tree of G(D, 6) with wired boundary conditions. 

Let S 2 be the metric space obtained from S 2 by contracting S 2 - D to a single 

point. Then we may think of WT~ as a random point in 7-/($2), which is a.s. a 

tree. The tree FT~ may be thought of as a random point in 7-/(D), which is a.s. 

a tree. 
Let ~IIT~ := T(WT D) and ~I: D :-- ~(FT~),  that is, the w i red  p a t h s  ensem-  

ble  ~ T ~  is defined from the wired tree WT~ in exactly the same way that the 

ordinary paths ensemble T~ was defined from T~, and similarly for ~ .  Note 

that  ~IJ~:~ e 7~($~ • S~ • ~ (S~) )  and ~ e 7-/(9 • D • n ( D ) ) .  Also the 

definitions of the scaling limits and the trunk are the same as in the previous 

section. 

THEOREM 11.1: Let D C ~2 be a domain whose boundary is a Cl-smooth 

simple dosed curve. 

(i) Theorem 10.2, with S 2 replaced by D, holds for the free and wired spanning 

trees in D. 
(ii) The free scaling limit trunk in D is disjoint from OD, in every (subsequen- 

tial) scaling limit. 

(iii) The free scaling limit trunk in D is disjoint from the scaling limit trunk of 

the dual tree (which is wired), in every (subsequential) scaling limit. 

There are simply connected domains where OD is not a simple closed curve 

and (ii) fails: the domain (0, 2) x (0, 2) oo 0 - -  U n = l (  ' 1] • {I /n} is an example. 

LEMMA 11.2: There is an absolute constant C > 0 such that the following holds 

true. Let D be as in Theorem 11.1. Then there is a 6o = 6o(D) > 0 with the 

following property. Suppose that 6 and 61 are numbers satisfying 0 < 6 <. 61 <. 6o 

and A is a connected subgraph of G(D, 6) with diameter a t / e a s t  61. Further 

suppose that p E V(G(D, 6)) has distance 61 to A. Then the probability that 

a random walk on G(D, 6) starting at p will get to distance C~1 from p before 

hitting A is less than 1/2. 



282 O. SCHRAMM Isr. J. Math. 

Proof'. The proof is similar to the proof of Lemma 10.9. Let Z = Z(t) be the 

set of vertices with distance at least t from p, where we take t > 461. Let A ~ 

be a component of A A B(p, 361) containing some point at distance 61 to p and 

having diameter at least 61. For v E V(G(D, 6)), let h(v) be the probability that  

a random walk starting from v will reach Z before hitting A ~. Then h is discrete- 

harmonic, and minimizes Dirichlet energy among functions that  are 1 on Z and 0 

on A'. As in the proof of Lemma 10.9, it follows that  the Dirichlet energy of h is at 

most O(1)/ log(t /61) .  Let B be the set of vertices v at distance at most 261 from 

p such that  h(v) ~ h(p), and let B '  be the component of B containing p. Note 

that the diameter of B ~ is at least 6t, as B ' must neighbor with some vertex with 

distance 261 from p, by the maximum principle for h. As in the proof of Lemma 

10.9, it can be shown that when 61 is sufficiently small (how small depends on 

the scale in which OD appears smooth), one can find 0(1)/6 disjoint paths in 

6Z 2 A D connecting A' to B ~, each of combinatorial length O(1)/6. Because h 

is zero on A ~ and at least h(p) on B ~, it follows that  the Dirichlet energy of h 

is at least O(1)h(p). We conclude that h(p) <. O(1)/log(t~61), which proves the 

lemma. | 

Proof of Theorem 11.1: The proof for (i) in the wired case is the same as the 

proof of Theorem 10.2 (and we don't  need to assume anything about D). The 

free case is the same, except that  one needs to appeal to Lemma 11.2. Assuming 

(ii), the proof of (iii) is identical to the proof of Theorem 10.7. The proof of (ii) is 

also the same as the proof of 10.7, except that one needs to find the appropriate 

substitutes for Lemma 10.8 and Corollary 10.6; namely, for every e > 0 there is 

an e0 > 0 such that  for all 5 E (0, e0) with probability at least 1 - e all points 

of degree three in the e-trunk of FT D have distance at least e0 from OD, and 

the probability that  there is a point p E OD such that  there are two disjoint 

crossings of the annulus A(p, e0, e) in the e-trunk of WT~ is at most e. The latter 

statement follows from the proof of Corollary 10.6. 

It remains to prove the appropriate substitute for 10.8. Consider three distinct 

points in D, Pl,P2,P3, and for 6 > 0 let ' ' ' Pl,P2,P3 be a triple of points in 6Z 2 

which is close to Pl,P2,P3, respectively. Let m be the meeting point of p~,p2~ ,P3 

in FT~, and let B be any disk whose center is in OD and which does not intersect 

{p~,p~2,p~3}. Let B'  and B"  be disks concentric with B of 1/2 and 1/4 of its size, 

respectively. By part (i), it suffices to prove that  with probability going to 1 as 

e0 -+ 0 and 6 -~ 0, m is not within distance e0 from OD A B". 
Suppose that  m E B. Let 3'1,72, 3'3 be the arcs of FT D that  join m to Pl,P2,P3; t , 

respectively, and let 73 be the largest initial segment of 7j that  is contained in B, 
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j = 1, 2, 3. There is a unique k E {1, 2, 3} such that Uj#k 73 separates 7~ from 

OD in B. By symmetry, it suffices to estimate the probability that  m is close 

to B M OD and k = 3. We generate m in the following way. Let "7 be a LERW 

from p~ to p~ in 5Z 2 M D. Let X be a random walk on 5Z 2 M D starting at p~, 

let % be the first time t where X(t) C % and let T1 be the first time t when X(t) 
is incident with an edge intersecting OD M B ~. Then we may take m = X(%). 

Consider the event A where m E B, k = 3 and T1 /> %. With high probability, 

the points X(t), t ~< ~-1, which are close to B'M OD, are also close to X(T1). This 

is just a property of simple random walk absorbed at B' M OD. Consequently, on 

,4, with high probability, if m is close to B M OD, then 7 passes close to X(T1). 
Since the probability that V passes near any point, which is not too close to p~ 

and p~, is small (Remark 3.2 applies here), and X(T1) is independent of % we 

see that ,4 has arbitrarily small probability. 

We now need to consider the case k = 3 and TI < %. Let T~ be the first t /> T1 

such that  X(t) ~ B, and let ~-2 be the first t/> T~ such that X(t) is incident with 

an edge intersecting OD M B'. Inductively, let T" be the first t ~> Tn such that  

X(t) ~ B and let ~-n+l be the first t /> T" such that X(t) is incident with an 

edge intersecting OD M B'. Note that if k = 3 and % > T1, then % > ~"1, for the 

random walk X must go around 74 U 7~ before hitting % Similarly, if k = 3 and 
t % > T1, then % E (rn,Tn+l) for some n E N. If we fix a finite k E N, then the 

same argument as above shows that with high probability, 7 does not pass close 

to the set {X(Tn): n = 1 ,2 , . . .  ,k}. Because P[T~ < 7] -+ 0 as k -+ co, uniformly 

in 6, the required result follows. I 

Suppose that D and D' are two domains in ]K 2 such that the boundaries 

OD, OD' are simple closed paths in ~2. Then there is a conformal homeomor- 

phism f :  D -+ D'. Moreover, f extends continuously to a homeomorphism of D 

onto D~, which we will also denote by f .  It follows that f induces maps 

fw:  n ( S ~  x S ~  • n ( S 2 ) )  --+ 7/(S~, •  • 7-/(S~,)), 

f F : 7-L (-D x D x "t-L (-D ) ) --+ "t-L ( D x D x 7-I (-D ) ) . 

THEOREM 11.3: Let D C ]~2 be a domain whose boundary is a Cl-smooth 

simple dosed path. Assuming Conjecture 1.2, the following is true. 

(i) The free and the wired UST scaling limits, ~ ,  fi13T., in D exist. (That is, 
they do not depend on the sequence of 5 tending to 0.) 

(ii) If  f: D --+ D ~ is a conformal homeomorphism between such domains, then 
f w  is measure preserving from the law of f2II~ in D to the law of fiIlT in 
D', and similarly for free boundary conditions. 
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Proo~ The proof for wired boundary conditions follows from Wilson's algorithm 

and Theorem 11.1. The easy details are left to the reader. 

For the free boundary conditions, observe that  WT D is dual to FT D (on the 

dual grid). Remark 10.14 is also valid in the present setting, and shows that the 

free scaling limit trunk can be reconstructed from the wired scaling limit trunk. It 

is easy to see that the free scaling limit ~ff/can be reconstructed from the trunk. 

Hence, conformal invariance of the wired UST implies conformal invariance of 

the free. | 

12. Speculat ions  about  the  Peano  curve scaling limit 

This section will discuss the Peano curve winding between the UST and its dual. 

From here on, the discussion will be somewhat speculative, and we omit proofs, 

not because the proofs are particularly hard, but because the paper is long enough 

as it is, and it is not clear when another paper on this subject will be produced. 

This Peano curve was briefly mentioned in [BLPS98]. Consider the set of points 

06 C 11( 2 which have the same Euclidean distance from T~ as from its dual T~. 

It is easy to verify that 0~ is a simple path in a square grid Gp(5), of mesh (f/2, 

which visits all the vertices in that grid. Set 0~ := 0~ U {co}. Then 0~ is a.s. a 

simple closed path in S 2 passing through co. 

To consider the scaling limit of 0~, it is no use to think of it as a set of 

points in S 2 , because then the scaling limit will be all of S 2. Rather, one needs to 

parameterize 0~ in some way. One natural parameterization would be by the area 

of its 5/2-neighborhood, but there are several other plausible parameterizations. 

Another, more sophisticated approach, would be to think of 0~ as defining a 

circular order on the set 0"~. The circular order R~ is a closed subset of ($2) 4, 

and (a, b, c, d) �9 R~ iff a, b, c, d �9 0~ and {a, c} separates b from d on 0~. Then 

the (subsequential) scaling limit of ~6 may be taken as the weak limit of the law 
of R~ in ~(($2)4)." " 

% /  

Let 0 denote the Peano curve scaling limit, defined as a path, or as a circular 

order, or some other reasonable definition. Here is what we believe to be a 

description of 0, in terms of the scaling limit of the UST. Recall that in Remark 

10.15, we have introduced a completion trunk, of the trunk, in the metric d*, 

where the distance between any two points of trunk is the diameter of the arc 

connecting them, and that r :  trunk. -~ S 2 is the natural projection. Consider the 

joint distribution of trunk, and the dual trunkt., and let ~t denote the projection 

r t :  trunk~ -+ S 2. Let 0 be the set of points (p,q) �9 trunk. • trunkt, such that  

~-p = ~-tq. Then t~ is a simple closed path, and the map ~ ~ $2 defined by 
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(p, q) ~ r p  gives the scaling limit 0. 

Fix some a, b E R2, a ~= b. Let Wa,b be the path such that  (a, b, Wa,b) E ~: (this 

w~,b is a.s. unique), and let w~, b be such that  (a,b,~,b) E Tt. Then Wa,b and Ja,b 

are a.s. simple paths. Let D1 and D2 be the two components of S 2 - (W~,b UW~,b). 
A.s. co E D1 U D2, and without loss of generality take co E D1. It is then clear 

that  the part  of 0 which is between a, b and does not contain co is D2, and that  

the part  which does contain co is D1. Suppose that  we c o n d i t i o n  on W~,b and 
on Wa,b,t and look at some point c E D2. We'd like to know the distribution of the 

part  of ~ between c and a which does not include b, say. Recall that  on a finite 

planar graph, we may generate the UST and the dual UST by a modification of 

Wilson's algorithm, where at each step in which we start  from a vertex in the 

graph, the dual tree built up to that  point acts as a free boundary component, and 

the tree built up to that  point acts as an absorbing wired boundary component, 

and at steps in which we start  from a dual vertex, the tree built up to that  point 

acts as a free boundary component, and the dual tree built up to that  point 

acts as an absorbing wired boundary component. Consequently, we let c~ be the 

scaling limit of LERW on 5Z 2 - w~, b starting at c that  stops when it hits (..da, b. 
Then we let (~t be the scaling limit of LERW on 5Z 2 - (~ U Wa,b) starting at c 

that  stops when it hits wta, b. (Since c E ~, to define this requires taking a limit 

as the starting point tends to c.) Then ~ U s t separates D2 into two regions, say 

D~ and D~ ~, and if b ~ D~2, then D~ is the part  of ~ "separated" from b by (a, c}. 

In the above construction, the domain D2 was considered with mixed boundary 

conditions. One arc of 0D2 - (a, b} was taken as wired, while the other was 

free. The resulting Peano path  scaling limit ~ is a path joining a and b in D2. 

From Conjecture 1.2 should follow a conformal invariance result for UST in such 

domains with mixed boundary conditions. Therefore, having an understanding 

of the law of the Peano curve for one triplet (D, a, b), where a and b are distinct 

points in OD, which is a simple closed curve, suffices for any other such triplet. 

This suggests that  we should take the simplest possible such configuration, that  

is, D - H, the upper half plane, a -- 0, b = co. Suppose that  we then take a point 

c E H and condition on the part  of ~ between 0 and c and separated from co. The 

effect of that  on 0 in the remaining subdomain Dc of H is all in the boundary ODc. 
This is a kind of Markovian property for the Peano curve, similar to the property 

given by Lemma 4.3. By taking the conformal map from D~ to H, which fixes co, 

takes c to 0, and is appropriately normalized at co, we may return to base one. 

This suggests that ,  as we have claimed in the introduction, a representation of 

the Peano curve scaling limit is similar to the SLE representation of the LERW 
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from 0 to 0~f which we have introduced. The analogue of the LSwner differential 

equation for this situation is (1.6). Due to the Markovian nature of the Peano 

curve, the corresponding parameter ( in (1.6) should have the form ( = B(~t), 

where B is Brownian motion on ~ starting at 0, and ~ is some constant. One 

can, in fact, show that ~ = 8, by deriving an appropriate analogue of Cardy's 

[Car92] conjectured formula, using the representation (1.6) and the techniques of 

Section 9. The details will appear elsewhere. 
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