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ABSTRACT

The uniform spanning tree (UST) and the loop-erased random walk
(LERW) are strongly related probabilistic processes. We consider the
limits of these models on a fine grid in the plane, as the mesh goes to
zero. Although the existence of scaling limits is still unproven, subse-
quential scaling limits can be defined in various ways, and do exist. We
establish some basic a.s. properties of these subsequential scaling limits
in the plane. It is proved that any LERW subsequential scaling limit is a
simple path, and that the trunk of any UST subsequential scaling limit
is a topological tree, which is dense in the plane.

The scaling limits of these processes are conjectured to be conformally
invariant in dimension 2. We make a precise statement of the conformal
invariance conjecture for the LERW, and show that this conjecture implies
an explicit construction of the scaling limit, as follows. Consider the
Lowner differential equation

9f _ ¢(t)+29f

z

ot~ T¢t)—z 92’

with boundary values f(z,0) = z, in the range z € U= {w € C: |w| < 1},
t € 0. We choose {(t) := B(—2t), where B(t) is Brownian motion on
U starting at a random-uniform point in dU. Assuming the conformal
invariance of the LERW scaling limit in the plane, we prove that the
scaling limit of LERW from O to U has the same law as that of the
path f(¢(t),t) (where f(z,t) is extended continuously to 8U x (—o0,0]).
We believe that a variation of this process gives the scaling limit of the
boundary of macroscopic critical percolation clusters.
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1. Introduction

GENERAL REMARKS ABOUT SCALING LIMITS. It is often the case that grid-
based probabilistic models should be considered as a mere substitute, or simplifi-
cation, of a continuous process. There are definite advantages for working in the
discrete setting, where unpleasant technicalities can frequently be avoided, sim-
ulations are possible, and the setup is easier to comprehend. On the other hand,
one is often required to pay some price for the simplification. When we adopt
the grid-based world, we sacrifice rotational or conformal symmetries which the
continuous model may enjoy, and often have to accept some arbitrariness in the
formulation of the model. There are also numerous examples where the continu-
ous process is easier to analyze than the discrete process, and in such situations
the continuous may be a useful simplification of the discrete.

Understanding the connections between grid-based models and continuous pro-
cesses is a project of fundamental importance, and so far has only limited success.
As mathematicians, we should not content ourselves with the vague notion that
the discrete and continuous models behave “essentially the same”, but strive to
make the relations concrete and precise.

One reasonable way to define a continuous process is by taking a scaling
limit of a grid process. This means making sense of the limit of a sequence of
grid processes on finer and finer grids. Recently, Aizenman [Aiz] has proposed a
definition for the scaling limit of percolation, and we shall propose a somewhat
different definition [Sch].

Although, in general, the understanding of the connections between grid-based
models and continuous models is lacking, there have been some successes. The
classical and archetypical example is the relation between simple random walk
(SRW) and Brownian motion, which is well studied and quite well understood.
See, for example, the discussion of Donsker’s Theorem in [Dur91]. We also men-
tion that recently, Téth and Werner [TW98| have described the scaling limit of
a certain self-repelling walk on Z.

The present paper deals with the scaling limits of two very closely related
processes, the loop-erased random walk (LERW) and the uniform spanning tree
(UST). While these processes are interesting also in dimensions 3 and higher,
we restrict attention to two dimensions. In the plane, the scaling limits are
conjectured to possess conformal invariance (precise statements appear below),
and this can serve as one justification for the special interest in dimension 2. The
recent preprint by Aizenman, Burchard, Newman and Wilson [ABNW] discusses
scaling limits of random tree processes in two dimensions, including the UST.
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The present work answers some of the questions left open in [ABNW].

The most fundamental task in studying a scaling limit process is to set up a
conceptual foundation for the scaling limit. This means answering the following
two questions: what kind of object is the scaling limit, and what does it mean to
be the scaling limit? For the first question, there’s often more than one “right”
answer. For example, the scaling limit of (two-sided) simple random walk in
Z is usually defined as a probability measure on C(R), the space of continuous,
real-valued functions on R, but it could also be defined as a measure on the space
of closed subsets of R x R, with an appropriately chosen metric. There’s also a
“wrong” answer here. It is not a good idea to consider the scaling limit of SRW
as a probability measure on RR, though this might seem at first as more natural.

After the conceptual framework is fixed, the next natural question is the exis-
tence of the scaling limit. Unfortunately, we cannot report on any progress here.
There is every reason to believe that UST and LERW have scaling limits, but a
proof is still lacking. However, in the setup we propose below, the existence of
subsequential scaling limits is almost a triviality: for every sequence of positive
d; tending to 0, there is a subsequence d;, such that the UST and the LERW
on the grids §;,Z? do converge to a limit as n — oco. Such a limit is called a
subsequential scaling limit of the model, and is a probability measure on some
space.

All the above discussion concerns foundational issues, which are important.
But it is not less important to prove properties of the (subsequential) scaling
limit.! In this paper, we prove several almost sure properties of the UST and
LERW subsequential scaling limit. We now describe these models and explain
the results.

THE LERW MODEL AND ITS SCALING LIMIT. Consider some set of vertices
K # 0, in a recurrent graph G, and a vertex vg. The LERW from v to K in G is
obtained by running simple random walk (SRW) from vy, erasing loops as they
are created, and stopping when K is hit. Here’s a more precise description. Let
RW be simple random walk starting at RW(0) = vy and stopped at the first time
7 such that RW(r) € K. Its loop-erasure, LE = LEgy, is defined inductively as
follows: LE(0) := vp, and LE(5 + 1) = RW(¢ + 1) if ¢ is the last time less than 7
such that RW(t) = LE(j). The walk LE stops when it gets to RW(r) € K. Note

1 Sometimes, this can be done without even defining the scaling limit. For
example, the Russo-Seymour-Welsh Theorem [Rus78], [SW78] in percolation
theory implies properties of any reasonably defined percolation scaling limit.
Similarly, Benjamini’s paper [Ben] does not explicitly discuss the scaling limit
of UST, but has implication to the UST scaling limit.
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that this LERW is a random simple path from vg to K.

On a transient graph, it may happen that RW does not hit K. However, one
can discuss the loop-erasure of the walk continued indefinitely, since it a.s. visits
any vertex only finitely many times.

LERW on Z? was studied extensively by Greg Lawler (see the survey paper
[Law] and the references therein), who considered LERW as a simpler substi-
tute for the self-avoiding random walk (see the survey [Sla94]), which is harder
to analyze. However, we believe that the LERW model is just as interesting
mathematically, because of its strong ties with SRW and UST.

For compactness’s sake, in the following we consider the plane C = R? as a
subset of the two-sphere, S? = C U {oo}, which is the one point compactification
of the plane, and work with the spherical metric d,, on S?. Let D be a domain
(nonempty open connected set) in the plane C = R?. We consider a graph
G = G{(D, §), which is an approximation of the domain D in the square grid §Z°
of mesh 4. The interior vertices, V(G), of G are the vertices of §Z2 which are
in D, and the boundary vertices, V5(G), are the intersections of edges of §Z2
with 8D. (The precise definition of G appears in Section 2.) Suppose that each
component of 8D has positive diameter. Let a € D, and let LE = LE; p s be
LERW from a vertex a’ € 6Z? N D closest to a to V(G) in G.

To make sense of the concept of the scaling limit of LERW in D, we think of
LE as a random set in D. Recall that the Hausdorff distance d#(X,Y) between
two closed nonempty sets X and Y in a compact metric space Z is the least £ > 0
such that each point z € X is within distance ¢ from Y and each point y € Y is
within distance ¢t from X; that is,

dy(X,Y) = inf {t >0:XC U B(z,t), Y C U B(y,t)}.
z€X yeY

On the collection H(D) of closed subsets of D, we use the metric dy(p)(X,Y) :=
dy (X UdD,Y UdD), and H(D) is compact with this metric. Then LEN D is a
random element in H(D), and its distribution 5 = us p is a probability measure
on H(D). Because the space of Borel probability measures on a compact space
is compact in the weak topology,? there is a sequence §; — 0 such that the weak
limit po := lim;_, o0 ps, exists. Such a measure po will be called a subsequential
scaling limit measure of LERW from a to 8D. If uy = lims_o ps, then we say
that g is the scaling limit measure of LERW from a to dD.

Similarly, we may consider the scaling limit of LERW between two distinct

2 We review the notion of weak convergence in Section 2.
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points a,b € S, as follows. For § > 0, we take LE to be the loop-erasure of
SRW on 6Z? starting from a vertex of 6Z? within distance 26 of a and stopped
when it first hits a vertex within distance 20 of b. Since LE is a.s. compact, its
distribution is an element of the Hausdorff space H(S?), and there exists a Borel
probability measure on H(S?), which is a subsequential scaling limit measure of
the law of LE.

THEOREM 1.1: Let D be a domain in S* such that each connected component
of D has positive diameter, and let a € D. Then every subsequential scaling
limit measure of LERW from a to 8D is supported on simple paths.

Similarly, if a, b are distinct points in S?, then every subsequential scaling limit
of the LERW from a to b in 6Z* is supported on simple paths.

Saying that the measure is supported on simple paths means that there’s a
collection of simple paths whose complement has zero measure.

THE CONFORMAL INVARIANCE CONJECTURE FOR LERW. Consider two do-
mains D, D’ C §?. Every homeomorphism f: D — D’ induces a homeomorphism
H(D) — H(D'). Consequently, if u is a probability measure on H(D), there is
an induced probability measure f,u on H(D').

CONJECTURE 1.2: Let D G C be a simply connected domain in C, and let
a € D. Then the scaling limit of LERW from a to dD exists. Moreover, suppose
that f: D — D' is a conformal homeomorphism onto a domain D' C C. Then
felia,p = py(a),p', Where p, p is the scaling limit measure of LERW from a to
0D, and g4y, pr is the scaling limit measure of LERW from f(a) to 0D'.

Although conformal invariance conjectures have been “floating in the air” in the
physics literature for quite some time now, we believe that this precise statement
has not yet appeared explicitly. Support for this conjecture comes from simu-
lations which we have performed, and from the work of Rick Kenyon [Ken98a],
[Ken98b]|, [Ken99].

We prove that Conjecture 1.2 implies an explicit description of the LERW scal-
ing limit in terms of solutions of Lowner’s differential equation with a Brownian
motion parameter. We now give a brief explanation of this.

Let U := {z € C: |z] < 1}, the unit disk. If v is a compact simple path in
U — {0}, such that y N 8U is an endpoint of -, then there is a unique conformal
homeomorphism f,: U — U ~ 7 such that f,(0) = 0 and f/(0) > 0 (that is,
f3(0) is real and positive). Moreover, if 7 is another such path, and ¥ D v, then
£,(0) > f;;\(O). Now suppose that 3 is a compact simple path in U such that
0U N 3 is an endpoint of § and 0 is the other endpoint of 8, as in Figure 1.1.
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For each point ¢ € § — {0}, let 3, be the arc of 8 extending from ¢ to U, and
let h(g) == log f5 (0). (If ¢ is the endpoint of 8 on 9U, then fg (2) = z.) It
turns out that h is a homeomorphism from 8 — {0} onto (—o0,0]. We let ¢(t)
denote the inverse map ¢: (—o0,0] — 8, and set f(z,t) = fi(z) := [, (2)- In
this setting, Lowner’s Slit Mapping Theorem [L6w23] (see also [Pom66]) states
that fi(z) is the solution of Lowner’s equation

0 a6 2
(1.1) éift(z)—zft(z)((t)—z’ Vz € U,Vt € (—00,0],

where (: (—00,0] — 8U is some continuous function. In fact, {(t) is defined by
the equation

F(C@),t) = q(t).

(The left hand side makes sense, since there is a unique continuous extension of
fi to OU.) Note that f also satisfies

(1.2) f(z,0) =2 Vzel.

Figure 1.1.

THEOREM 1.3 (The differential equation for the LERW scaling limit): Assume
Conjecture 1.2. Let B(t), t > 0 be Brownian motion on 0U starting from a
uniform-random point on 0U. Let f(2,t) be the solution of (1.1) and (1.2), with
¢(t) == B(—2t). Set

(1.3) oft) = f(C(t),t), t<O.
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Then {0} U o((~00,0)) has the same distribution as the scaling limit of LERW
from 0 to OU.

The Brownian motion B(t) in the theorem can be defined as B(t) := exp(iB(t)),
where B(t) is ordinary Brownian motion on R, starting at a uniform-random point
in [0, 27).

Remark 1.4: Tt is not a priori clear that o(t) is well defined and that o(t) is a
simple path. For example, we do not know how to prove that f; extends continu-
ously to U without assuming Conjecture 1.2. The proof of Theorem 1.3 starts by
considering the scaling limit of LERW, which is a simple path by Theorem 1.1.
It is then shown that the corresponding ¢ has the same distribution as B(—2t).

Remark 1.5: Although (1.1) may look like a PDE, it can in fact be presented
as an ODE. Set ®(z,t,s) := f;!(f:(2)) when t < s < 0. Then

(1.4) O(z,t,t) = 2.

It is immediate to see that f; satisfies (1.1) iff ® = ®(z,t, s) satisfies

s ((s)-@

(1.5) 0® ¢§(3)+<I)

Therefore, fi(#) can be obtained by solving the ODE (1.5) with ¢ fixed and
s € [t,0].

Note that (¢ + ®)/(¢ — ®) has positive real part when ® € U and ¢ € dU.
Therefore, (1.5) implies that |®(z,¢, s)| is monotone decreasing as a function of
s. From this it can be deduced that there is a unique solution to the system (1.4)
and (1.5) in the interval s € [t,0].

Obviously, Theorem 1.3 together with Conjecture 1.2 describe the LERW
scaling limit in any simply connected domain D g C, since such domains are
conformally equivalent to U.

It would be interesting to extract properties of the LERW scaling limit from
Theorem 1.3.

At the heart of the proof of Theorem 1.3 lies the following simple combinatorial
fact about LERW. Conditioned on a subarc 3 of the LERW g from 0 to 6D,
which extends from some point ¢ € 3 to D, the distribution of 8 — ' is the same
as that of LERW from 0 to 8(D — ('), conditioned to hit ¢q. (See Lemma 4.3.)
When we take the scaling limit of this property, and apply the conformal map
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from 8(D — ') to U, this translates into the Markov property and stationarity
of the associated Lowner parameter (.

THE UNIFORM SPANNING TREE AND ITS SCALING LIMIT. Shortly, a defini-
tion of the uniform spanning tree (UST) on Z? will be given. The UST is a
statistical-physics model. It lies in the boundary of the two-parameter family
of random-cluster measures, which includes Bernoulli percolation and the Ising
model [Hig95]. The UST is very interesting mathematically, partly because it
is closely related to the theory of resistor networks, potential theory, random
walks, LERW, and in dimension 2, also domino tilings. The paper [BLPS98]
gives a comprehensive study of uniform spanning trees (and forests), following
earlier pioneering work [Ald90], [Bro89], [Pem91], [BP93], [Hag95]. A survey of
current UST theory can be found in [Lyo98].

Let G be a connected graph. A forest is a subgraph of G that has no cycles. A
tree is a connected forest. A subgraph of G is spanning if it contains V(G), the
set of vertices of G. We will be concerned with spanning trees. Since a spanning
tree is determined by its edges, we often don’t make a distinction between the
spanning tree T and its set of edges E(T).

If G is finite, a uniform spanning tree (UST) in G is a random spanning tree
T C G, selected according to the uniform measure. (That is, P[T = Tj| =
P[T = T5], whenever T} and T3 are spanning trees of G.)

It turns out that UST’s are very closely related to LERW’s. If a,b € V(G),
then the (unique) path in the UST joining a and b has the same law as the LERW
from a to b in G. (This, in particular, implies that the LERW from a to b has
the same law as the LERW from b to a.) Wilson’s algorithm [Wil96], which will
be described in Section 2, is a very useful method to build the UST by running
LERW’s,

R. Lyons proposed (see [Pem91]) to extend the notion of UST to infinite graphs.
Let G be an infinite connected graph. Consider a nested sequence of connected
finite sugraphs G; € G2 C --- C G such that G = Uj G;. For each j, the
uniform spanning tree measure y; on G; may be considered as a measure on
2B(9) | the o-field of subsets of the edges of G, generated by the sets of the form
{F C E(G): e € F}, e € E(G). Using monotonicity properties, it can be shown
that the weak limit x := lim;_, o pt; exists, and does not depend on the sequence
{G,}. Tt is called the free uniform spanning forest measure (FSF) on G. (The
reason for the word ‘free’ is that there’s another natural kind of limit, the wired
uniform spanning forest (WSF). On Z¢, these two measures agree.) R. Pemantle
[Pem91] proved that if d < 4, the FSF measure on 72 is supported on spanning
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trees (that is, if T is random and its law is the FSF measure, then T is a.s. a
spanning tree), while if d > 5, the measure is supported on disconnected spanning
forests.

Let us now restrict attention to the case G = Z?. Since it is supported on
spanning trees, we call the FSF measure on Z? the uniform spanning tree
(UST) on Z2. 1. Benjamini [Ben] and R. Kenyon [Ken99] studied asymptotic
properties of the UST on a rescaled grid 6Z?, with & small, but did not attempt
to define the scaling limit. Aizenman, Burchard, Newman and Wilson [ABNW]
defined the scaling limit of UST (and other tree processes) in Z?, and studied
some of their properties.

We present a different definition for the scaling limit of the UST. Let § > 0.
Again, we think of 67 as a subset of the sphere S* = R? U {oo}. Let Ts be
the UST on 6Z2, union with the point at infinity. Then 'T'g can be thought of
as a random compact subset of S2. However, it is fruitless to consider the weak
limit as & — 0 of the law of Ts as a measure on the Hausdorff space H(S?), since
the limit measure is an atomic measure supported on the single point in H(S?),
which is all of S.

Given two points a,b € ?5, let w,p be the unique path in ?5 with endpoints
a and b, allowing for the possibility w,p = {a}, when a = b. (It was proved
by R. Pemantle that a.s. the UST T in Z? has a single end; that is, there is
a unique infinite ray in T starting at 0. This implies that indeed w,p exists
and is unique, not only for T, but also for T U {oo}.) Let T5 = T5(Ts) be the
collection of all triplets, (a,b,wq ), where a,b € '?,5. Then %5 is a closed subset
of §? x §? x #(S?), and the law us of Ts is a probability measure on the compact
space H(S? x §? x #(S?)). By compactness, there is a subsequential weak limit
1 of ps as § — 0, which is a probability measure on H(S? x S? x H(S?)). We
call i a subsequential UST scaling limit in Z2. If p := lims_,¢ i3, as a weak
limit, then u is the UST scaling limit.

We prove

THEOREM 1.6: Let u be a subsequential UST scaling limit in Z?, and let ¥ €
H(S? x §? x H(S?)) be a random variable with law . Then the following holds
a.s.
(i) For every (a,b) € S? x §?, there is some w € H(S?) such that (a,b,w) € T.
For almost every (a,b) € S? x $?, this w is unique.
(ii) For every (a,b,w) € %, if a # b, then w is a simple path, that is, homeo-
morphic to [0,1]. If a = b, then w is a single point or homeomorphic to a
circle. For almost every a € S?, the only w such that (a,a,w) € T is {a}.
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(iii) The trunk,
trunk := U (w - {a,b}),
(a,b,w)eT
is a topological tree (in the sense of Definition 10.1), which is dense in $?.

(iv) For each x € trunk, there are at most three connected components of
trunk — {z}.

This theorem basically answers all the topological questions about the UST
scaling limit on Z2. It is sharp, in the sense that all the “almost every” clauses
cannot be replaced by “every”. Benjamini [Ben| proved a result which is closely
related to item (iv) of the theorem, and [ABNW] proved (in a different language)
that (iv) holds with “three” replaced by some unspecified constant.

The dual of a spanning tree T C Z? is the spanning subgraph of the dual
graph (1/2,1/2) 4+ Z? containing all edges that do not intersect edges in T'. It
turns out that duality is measure preserving from the UST on Z? to the UST
on the dual grid. The key to the proof of Theorem 1.6 is the statement that the
trunk is disjoint from the trunk of the dual UST scaling limit.

Let us stress that Theorem 1.6 is not contingent on Conjecture 1.2. The only
contingent theorems proved in this paper are Theorem 1.3, and Theorem 11.3,
which says that Conjecture 1.2 implies conformal invariance for the scaling limit
of the UST on subdomains of C.

Recent work of R. Kenyon [Ken98a), [Ken98b] proves some conformal invari-
ance results for domino tilings of domains in the plane. There is an explicit
correspondence between the UST in Z? and domino tilings of a finer grid. Based
on this correspondence, some properties of the UST can be proved using Kenyon’s
machinery. For example, Kenyon has shown [Ken98b] that the expected number
of edges in a LERW joining two boundary vertices in (6Z2) N [0,1]? (whose dis-
tance from each other is bounded from below) grows like §75/4, as § — 0. He
can also show [Ken99] that the weak limit as § — 0 of the distribution of the
UST meeting point of three boundary vertices of D N (6Z2) is equivariant with
respect to conformal maps. That can be viewed as a partial conformal invari-
ance result for the UST scaling limit. Another example for the applications of
Kenyon’s work to the UST appears in Section 8. It seems plausible that perhaps
soon there would be a proof of Conjecture 1.2.

SLE WITH OTHER PARAMETERS, CRITICAL PERCOLATION, AND THE UST
PEANO CURVE. Let x > 0, and take ((t) := B(—~t), where B is as above,
Brownian motion on 8U, started from a uniform random point. Then there is a
solution f(z,t) of (1.1) and (1.2), and for each t <0, f; = f(-,2) is a conformal
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map from U into some subdomain Dy C U. We call the process of := U — Dy,
t < 0, the stochastic Lowner evolution (SLE) with parameter s. It is not
always the case that of is a simple path. Let £ be the set of all k > 0 such that
for all t < 0 the set of is a.s. a simple path. We show in Section 9 that sup £ < 4,
and conjecture that & = [0, 4].

In the past, there has been some work on the question of which Lowner
parameters ¢ produce slitted disk mappings ([Kuf47], [Pom66]), but only lim-
ited progress has been made. Partly motivated by the present work, Marshall
and Rohde [MR] have looked into this problem again, and have shown that when
¢ satisfies a Holder condition with exponent 1/2 and Hoélder(1/2) norm less than
some constant, the maps f; are onto slitted disks, and this may fail when { has
finite but large Hélder(1/2) norm.

Given some x > 0, even if k ¢ R, the process of, t < 0, is quite interesting.
It is a celebrated conjecture that critical Bernoulli percolation on lattices in R?
exhibits conformal invariance in the scaling limit [LPSA94]. Assuming such a
conjecture, we plan to prove in a subsequent work that a process similar to
SLE describes the scaling limit of the outer boundary of the union of all critical
percolation clusters in a domain D which intersect a fixed arc on the boundary of
D. We also plan to prove that this implies Cardy’s [Car92] conjectured formula
for the limiting crossing probabilities of critical percolation, and higher order
generalizations of this formula.

Figure 1.2. The boundary curve for critical percolation
with mixed boundary conditions.
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Let us now briefly explain this. In Figure 1.2, each of the hexagons is colored
black with probability 1/2, independently, except that the hexagons intersecting
the positive real ray are all white, and the hexagons intersecting the negative real
ray are all black. Then there is a boundary path 3, passing through 0 and sepa-
rating the black and the white regions adjacent to 0. Note that the percolation
in the figure is equivalent to Bernoulli(1/2) percolation on the triangular grid,
which is critical. (See [Gri89] for background on percolation.) The intersection
of A with the upper half plane, H := {z € C: Imz > 0}, which is indicated in
the picture, is a random path in H connecting the boundary points 0 and oo.

A subsequential scaling limit of SNH exists, by compactness, and naturally, we
believe that the weak limit exists. Let v be the scaling limit curve. The physics
wisdom (unproven, perhaps not even precisely formulated, but well supported)
is that the scaling limit of the “external boundary” of macroscopic critical per-
colation clusters in two dimensions has dimension 7/4 and is not a simple path
[SD87] (see also [ADA]), and we believe that this is true for 4.

In a subsequent paper, we plan to prove (by adapting the proof of Theorem 1.3),
under the assumption of a conformal invariance conjecture for the scaling limit
of critical percolation, that « can be described using a Lowner-like differential
equation in the upper half plane with Brownian motion parameter, as follows.
Consider the differential equation

(1.6 e

where ((t) = B(—kt), B is Brownian motion on R starting at B(0) = 0, and
fo(z) = z. Then f; is a conformal mapping from H onto a subdomain of H,
which is normalized by the so-called hydrodynamic normalization

Vz € H,¥t € (—00,0],

(1.7) Zll’rxolo fi(z) —z=0.

The claim is that for & = 6, the image of the path ¢t — f;({ (t)) has the same
distribution as . From this, one can derive Cardy’s [Car92] conjectured for-
mula for the limiting crossing probabilities of critical percolation, as well as some
higher order generalizations. This will be done in subsequent work, but basically
depends on the ideas appearing in Section 9 below.

A similar representation applies to the scaling limit of the Peano curve which
winds around the UST (this curve was discussed in [DD88] and mentioned in
[BLPS98]), but with x = 8. Given a domain D C S?, whose boundary is a
simple closed path, and given two distinct points a,b € 8D, there is a naturally
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defined (subsequential) scaling limit of the Peano curve of the UST in D, with
appropriate boundary conditions, and the scaling limit is an (unparameterized)
curve from a to b, whose image covers D. One can show that Conjecture 1.2
implies a conformal invariance property for the scaling limit. Based on this, it
should be possible to adapt the proof of Theorem 1.3 to show that Conjecture
1.2 implies a representation of the form (1.6) for this Peano scaling limit when
D=H, a=0,b= 00, and x = 8. We give a brief overview of this in Section 12,
and hope to give a more thorough treatment in a subsequent paper.

The differential equation (1.6) is very similar to Lowner’s equation, and the
only essential difference is that a normalization at an interior point for the maps
[t is replaced by the hydrodynamic normalization (1.7) at a boundary point (o).
The interior point normalization is natural for the LERW scaling limit, because
the LERW is a path from an interior point to the boundary of the domain. The
Peano curve and the boundary of percolation clusters, as discussed above, are
paths joining two boundary points, and hence the hydrodynamic normalization
is more appropriate for them.

Although Lowner’s Slit Mapping Theorem mentioned above applies to domains
of the form U — a, where a is a simple path in U — {0} with one endpoint in dU,
Pommerenke [Pom66] has a generalization, which is valid for some paths o which
are not simple paths. It is this generalization (or rather, its version in H with
the hydrodynamic normalization) which will substitute Léwner’s Slit Mapping
Theorem for the treatment of the percolation boundary or Peano curve scaling
limits.

The emerging picture is that different values of & in the differential equations
(1.1) or (1.6) produce paths which are scaling limits of naturally defined processes,

and that these paths can be space-filling, or simple paths, or neither, depending
on the parameter «.

ACKNOWLEDGEMENT: I wish to express gratitude to Itai Benjamini, Rick
Kenyon and David Wilson for inspiring discussions and helpful information.
Lemma 3.1 has been obtained jointly with Itai Benjamini. David Aldous, Mladen
Bestvina, Brian Bowditch, Steve Evans, Yakar Kannai, Greg Lawler, Russ Lyons,
Yuval Peres, Steffen Rohde, Jeff Steif, Benjamin Weiss and Wendelin Werner have
provided very helpful advice.

2. Some background and terminology

This section will introduce some notations which will be used, and discuss some
of the necessary background. We begin with a review of uniform spanning trees
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and forests. The reader may consult [BLPS98] for a comprehensive treatment of
that subject.

THE DOMINATION PRINCIPLE. Suppose that H and H' are two random subsets
of some set. We say that H’ stochastically dominates H if there is a proba-
bility measure p on pairs (A4, B) such that A has the same law as H, B has the
same law as H', and u{(A,B): B D A} = 1. Such a p is called a monotone
coupling of H and H'.

Let G be a finite connected graph, and let Gy be a connected nonempty sub-
graph. Let M be the set of vertices of G that are incident with some edge
in E(G) — E(Gyp). (We let E(G) and V(G) denote the edges and vertices of G,
respectively.) Let G§ be the graph obtained from G by identifying all the ver-
tices in M to a single vertex, called the wired vertex. Then GV is called the
wired graph associated to the pair (Go,G). Let T be the UST on G, let T§
be the UST on Gy, and let T be the UST on G¥¥. Then T¥ is called the free
spanning tree of the pair (Go,G), and T is the wired spanning tree of the
pair (Go, G). Sometimes, we call T{ [respectively, T4”] the UST on Gy with free
[respectively, wired] boundary conditions. The domination principle states
that T{ N Gy stochastically dominates T N Gy, and that T N Gy, stochastically
dominates T N Gy.

Now let GG be an infinite connected graph, and let G; C G2 C - -- be an infinite
sequence of finite connected subgraphs satisfying |J ;Gj=G. Let u}” be the law
of the wired spanning tree of (G;,G). Based on the domination principle, it is
easy to verify that the weak limit u" of u}"’ exists, and is a probability measure
on spanning forests of G. It is called the wired spanning forest of G (WSF).

The domination principle, when appropriatly interpreted, carries over to infi-
nite and to disconnected graphs as well. If G is a disconnected graph, we take the
FSF [respectively, WSF] on G to be the spanning forest of G whose intersection
with every component of G is the FSF [respectively, WSF] of that component,
and with the restriction to the different components being independent. The
more general formulation of the domination principle states that when Gy is a
subgraph of G, then T§ NGy stochastically dominates TNGy and TNGy stochas-
tically dominates T§ NGy, where T, T{ and T} are the FSF on G, Gy and GY,
respectively, and the same statement holds when FSF is replaced by WSF.

On all recurrent connected graphs, the WSF is equal to the FSF, and both
are trees. Therefore, on recurrent graphs we shall refer to this measure as the
uniform spanning tree (UST).

GRID APPROXIMATIONS OF DOMAINS. Let D C C be a domain, that is, an
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open, connected set. Given é > 0, we define a graph G = G(D,d), which is
a discrete approximation of the domain D in the grid 6Z2, as follows. The
interior vertices V;(G) = V;(D,§) of G are the vertices of §Z? which are in
D. The boundary vertices V5(G) = V(D, d) are the points of intersection of
the edges of the grid §Z% with 8D, the boundary of D. The vertices of G are
V(G) = Vo(G) UV[(G). If a,b € V(G) are distinct, then [a,b] is an edge of G iff
there is an edge e € E(6Z?) such that the open segment {ta+ (1—1)b: ¢ € (0,1)}
is contained in D Ne.

We will often be considering random walks on G(D,d) starting at 0, when
0 € D. It will be useful to denote by V3 the set of vertices v € Va(D, §) such
that there is a path from 0 in G(D, §) whose intersection with Vp is v.

The wired graph, G (D, §), associated with D is G(D, §) with all the vertices
Va(D, 8) collapsed to a single vertex, which we simply denote 0D.

We shall often not distinguish between a graph and its planar embedding, if
it has an obvious planar embedding. For example, the UST on G will also be
interpreted as a random set in the plane.

WILSON’S ALGORITHM. Let G be a finite graph. Wilson’s algorithm [Wil96]
for generating a UST in G proceeds as follows. Let vg € V(G) be an arbitrary
vertex (which we call the root), and set Tp := {vp}. Inductively, assume that
a tree T; C G has been constructed. If V(T;) # V(G), choose a vertex v €
V(G) - V(T3), let W;41 be LERW from v to T; in G, and set T := T; UWj41.
Otherwise V(T};) = V(G), and the algorithm stops and outputs Tj. It is somewhat
surprising, but true, that no matter how the choices of the vertices v; are made,
the output of the algorithm is a tree chosen according to the uniform measure.

If G is infinite, connected and recurrent, Wilson’s algorithm also “works”.
When the subtree T; generated by the algorithm includes all the vertices in a
certain finite set K C V(G), the subtree of T; spanned by K (that is, the minimal
connected subgraph of T; that contains K) has the same law as the subtree of the
UST of G spanned by K. (There is also a version of Wilson’s algorithm which is
useful for generating the WSF of a transient graph, but we shall not need this.)

HARMONIC MEASURE ESTIMATES. Because of Wilson’s algorithm, many
questions about the UST can be reduced to questions about simple random
walks (SRW’s). It is therefore hardly surprising that we often need to obtain a
harmonic measure estimate, that is, an estimate on the probability that SRW
starting from a vertex v will hit a certain set of vertices K; before hitting another
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set Kj. As a function of v, this probability is harmonic?

away from Ky U Kj.

Almost all the harmonic measure estimates which we will use are entirely
elementary, and follow from the following easy fact. Consider an annulus A =
A(p,r, R), with center p, inner radius r and outer radius R > r. Suppose that § is
sufficiently small so that there is a path in §Z? N A which separates the boundary
components of A. Let g € §Z% N A be some vertex such that the distance from g
to the boundary 04 is at least r/c, where ¢ > 0 is some constant. Let X be the
image of SRW starting from g, which is stopped when it first leaves A. Then the
probability that X contains a path separating the boundary components of A is
bounded below by some positive function of ¢. (This can be proved directly using
only the Markov property and the invariance of SRW under the automorphisms
of §Z2.) One consequence of this fact and the Markov property, which we will
often use, is as follows.

LEMMA 2.1: Suppose that K is a connected subgraph of §Z? of diameter at least
R, and v € 7. Then the probability that SRW starting from v will exit the ball
B(v, R) before hitting K is at most Co(dist(v, K)/R) Cl, where C —0,Cy > 0 are
absolute constants.

This lemma holds for the spherical as well as Euclidean metric.

LAPLACIAN RANDOM WALK. Although this will not be needed in the paper, we
have to mention another interpretation of LERW. Let G be a finite connected
graph, let K C V(G) be a set of vertices, and let a € V(G) — K. The LERW from
a to K can also be inductively constructed, as follows. Suppose that the first n
vertices a = LE(1),LE(2),...,LE(n) have been determined and LE(n) ¢ K. Let
hn: V(G) = [0,1] be the function which is 1 on K, 0 on {LE(1),...,LE(n)} and
harmonic on V(G) — (K U{LE(1),...,LE(n)}). Then LE(n + 1) is chosen among
the neighbors w of LE(n), with probability proportional to h,(w).

This formulation of the LERW may serve as a heuristic for Conjecture 1.2,
since discrete harmonic functions are good approximations for continuous har-
monic functions, and continuous harmonic functions in 2D have conformal invari-
ance properties. However, this heuristic is quite weak, since near a non-smooth
boundary of a domain, the approximation is not good.

WEAK CONVERGENCE OF MEASURES. We now recall several facts and defini-
tions regarding weak convergence. The reader may consult [EK86, Chap. 3] for
proofs and further references. Let (X, d) be a compact metric space, and let {y;}

3 A function h is harmonic at v, if h(v) is the average of the value of h on the
neighbors of v.
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be a sequence of Borel probability measures on X. Let y be a Borel probability
measure on X. Saying that the sequence u; converges weakly to ¢ means that
lim; [ f dp; = [ f dp for all continuous f: X — R. The Prohorov metric on the
space of Borel probability measures on X is defined by

&\(u, ') := inf{e > 0: p(K) < p'(Ne(K)) + € for all closed K C X},

where N(K) = \J i B(z,¢€) is the e-neighborhood of K. The space of Borel
probability measures on X is compact with respect to the Prohorov metric, and
weak convergence is equivalent to convergence in the Prohorov metric.

Let M{(u,u') be the collection of all Borel measures v on X x X such that
v(A x X) = pu(A) and v(X x A) = u'(A) for all measurable A C X. Such a v is
called a coupling of i and y'. The Prohorov metric satisfies

(2.1) d(p, /)= inf inf{e > 0: v{(z,y): d(z,y) > €} < e}.

vEM(p,u')
In other words, [f(,u, i’} < € means that one can find a probability space (2, P)
and two X valued random variables z,y: Q@ — X, such that P{d(z,y) > €] < eand
such that z has law p and y has law p’. This is obtained by taking an appropriate
P=ve M), Q:=X x X, and letting z and y be the projections on the
first and second factors, respectively.

CONFORMAL MAPS. We review some elementary facts about conformal map-
pings, as may be found in [Dur83], for example. Let D C C be some domain.
A continuous map f: D — C, which is injective and complex-differentiable, is
conformal. If f is conformal, then f~1: f(D) — C is also conformal. (Some
authors use the word univalent instead of conformal.)

Let D g C be simply connected. Then Riemann’s Mapping Theorem states
that there is a conformal homeomorphism f = fp from U onto D. Suppose also
that 0 € D; then f can be chosen to satisfy the normalizations f(0) = 0 and
f'(0) > 0, which render f unique. In this case, the number f’(0) is called the
conformal radius of D (with respect to 0). The Schwarz Lemma implies that

(2.2) £'(0) > inf{|2|: z ¢ f(U)},
while on the other hand, the Koebe 1/4 Theorem gives
(2.3) £(0) < 4inf{lz}: z ¢ fF(U)}.

Hence, up to a factor of 4, the conformal radius can be determined from the
in-radius.
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If 0 < a < b < o0, then the set of all conformal maps f: U — C satisfying
f£(0) =0 and a < |f'(0)] < b is compact, in the topology of uniform convergence
on compact subsets of U. If f;: U — C are conformal, f;(0) =0, and f; — f
locally uniformly, then the image f(U) can be described in terms of the images
D; = f;(U). Let D be the maximal open connected set containing 0 and con-
tained in Uy, N2, D;. If D # 0, then f(U) = D; otherwise, f(U) = {0}. This
is called Carathéodory’s Kernel Convergence Theorem.

If f: U — D is a conformal homeomorphism onto D, and 8D is a simple closed
curve, then f extends continuously to OU. The same is true if D = U — 3, where
8 is a simple path.

3. No loops

In this section, we prove that any LERW subsequential scaling limit is supported
on the set of simple paths. That is, we prove Theorem 1.1.

Let 01 and o0 be distinct points in R?. For each § > 0, let o and 0} be vertices
of 6Z? closest to o; and oz, respectively. Note that in 6Z? the combinatorial
distance between two vertices v, v € 672 is §~!||v — v||;. However, all metric
notions we use will refer to the Euclidean or spherical distance. In this section,
we will mainly use the Euclidean metric.

Let RW be a random walk on §Z2 starting at o} and stopped when o} is reached
for the first time. Let w = ws denote the loop-erasure of RW, and let Ps denote
the law of ws. The following lemma will show that the diameter of ws is “tight”.

LEMMA 3.1:
Ps[diamw > sdist(0}, 03)] < Cos™,

where Cy,Cq > 0 are absolute constants.

The proof is based on Wilson’s algorithm and an elementary harmonic measure
estimate. A more precise estimate can be obtained by using the discrete Beurling
Projection Theorem (see [Kes87] or [Law93]).

Proof: Set r := dist(o},0}), R := sdist(o},03)/4, and let z € §Z* be some
vertex such that dist(o},2) > 10R. For a,b € §Z?2, let w,; denote the path in
the UST of §Z? joining a and b. Let m be the meeting point of o}, 0}, z in the
UST, that is, the vertex in Wo3,05 M Woz,z N Wos 2 By Wilson’s algorithm, the
distribution of w is identical with the distribution of woy,m U woy,m.-

We now estimate P[diam(wo;,m) > sdist(o},03)]. Using Wilson’s algorithm,
we may generate wosm by letting w,; . be LERW from o} to z, and letting
Wo3,m be LERW from o} to Wo3,z- Condition on Wo3,z- By Lemma 2.1, the



240 0. SCHRAMM Isr. J. Math.

probability that SRW starting at o] will exit B(o], R) before hitting w,y . is at
most Cy(r/R)®3, for some constants Cy, C3 > 0. Therefore,

Pldiamwos m > 2R] < Ca(r/R)

Moreover, the same estimate holds for diam Woy ,m- Since Woy,05 = Woz,m UWoy,m,
we get Pldiamw,y o3 > 4R] < 2C,(r/R)“*. This completes the proof of the
lemma. |

Remark 3.2: The proof of the lemma can be easily adapted to show that if
a,b € 67% and K C 672, then the probability that LERW from a to K will
intersect B(b,r) is at most Cy (r/dist(a, b)) , provided r > §, where C4,Cs > 0
are absolute constants.

Definition 3.3: Let zgp € R%, r,e > 0. An (zp,7,€)-quasi-loop in a path w is
a pair a,b € w with a,b € B(z,r), dist(a,b) < ¢, such that the subarc of w
with endpoints a, b is not contained in B(z, 2r). Let A(zp,r,€) denote the set of
simple paths in R? that have a (2, r, €)-quasi-loop.

LEMMMA 3.4: Let c be the distance from o} to 03, let r € (0,c/4), € > 0 and
20 € R%. Then lim._,o Ps[A(z9,7,€)] = 0, uniformly in é.

Proof: Let By = B(zy,r) and By = B(zy,2r). The distance from B; to at least
one of the points o0}, 0} is at least ¢/4. By symmetry, we assume with no loss of
generality that dist(o3, B2) > c/4. Let €; € (0,¢/8), and let g be a vertex in 2
such that dist(q,03) € [e1 — 6, €1].

Let w? be a LERW from q to o} in 6Z?. Let RW be an independent simple
random walk from o}. Let RW’' be the part of the walk RW until w? is first hit.
Then, by Wilson’s algorithm, ws has the same distribution as the arc connecting
o} to o} in LE(RW') Uw9.

Let A’ be the event that LE(RW') has a (20,r, €)-quasi-loop, and let C be the
event that w? intersects By. Observe that

(3.1) A(zg,1,6) C A UC.

Since dist(g, 03) < € and dist(Bz,03) > ¢/4, from Lemma 3.1 we get an estimate
of the form

(3.2) P[C] < Cs(e1/0)

We now find an upper bound for P[A’ — C]. Let s, be the first time s > 0
such that RW(s) € B;. Let t; be the first time ¢ > s; such that RW(t;) ¢ Bs.
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Inductively, define s; to be the first time s > ¢;_; such that RW(s) € B, and ¢;
to be the first time ¢ > s; such that RW(t) ¢ B,. Let 7 be the first time ¢ > 0
such that RW(t) € w?. Finally, for each s > 0 let RW* be the restriction of RW
to the interval t € [0, s].

For each j = 1,2,..., we consider several events depending on RW" and 9.
Let Y; be the event that LE(RW*) has a (2,7, ¢)-quasi-loop. Let 7} be the event
that 7 > t;. Observe that LE(RW!) N B; C LE(RW%) if t € [t;,s;11). It follows
that A’ — C C Y, if § is the largest j with t; < 7. Therefore,

A-cclJ@nT).

j=1

Since T; D Tj4+1 for each j, this implies

(3.3) A —CCTmy1U U Vi

=1

for every m.

We first estimate P[7;4, | RW", w?]. Conditioned on any w?, the probability
that a SRW starting at any vertex outside of By will hit w? before hitting B, is
at least

Cs(e1)®,

where Cg > 0 depends only on c and r, and Cg > 0 is an absolute constant. This
is based on the fact that w? is connected, contains 03, and has diameter at least
€; — 6. Applying this to the walk RW from time ¢; on, we therefore get

P[Tj+1 | RWY, w9 < 1 — Cy(er)®e.

By induction, we therefore find that

m-—1

(3.4) P[T; | %) < (1 - Cg(el)c)g)

We now estimate P[¥;41 | =Y;,RWY]. Let Q; be the set of components
of LE(RW?+1) N B, that do not contain RW(s;41). Observe that for V; to
occur, there must be a K € @Q); such that the random walk RW comes at some
time t € {sj41,t;+1) within distance € of K N By but RW(t) ¢ K for all ¢ €
[8j+1,t5+1]. But if RW(2) is close to K, t € [sj41,tj41], then Lemma 2.1 can
be applied, to estimate the probability that RW will not hit K before time ¢;,1.
That is, conditioned on RW®**+| for each given K € Q;, the probability that
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W([sj+1,¢t5+1]) gets to within distance € of K but does not hit K is at most
C10(e/r)C1}, where C10,C;1 > 0 are absolute constants. Consequently, we get

P41 | =5, RWY] < C101Q;(e/r).
Observe that |Q;|, the cardinality of @;, is at most j. Therefore,

PVjt1 | =] < C105(e/r) 4.

This gives
m m—1 m—1
P[U ij <) _ PPN < Z P41 | 2Y;]
j=1 Jj=1 j=1
m—1
(3.5) FC10(e/r)Ct < C12mP(e/r)C1L.

—

j:

Combining this with (3.1), (3.2), (3.3) and (3.4), we find that
m—1
Ps {A(zo,r, e)] < 06(61/6)07 + C’12m2(e/r)cl1 + (1 - 086109) .
The lemma follows by taking m := |e=€11/3| and ¢, := —1/loge, say. [ |

THEOREM 3.5: Let (X, d) be a compact metric space, let 01,0, € X, let f: (0, 00)
— (0,00) be monotone increasing and continuous, and let I' = T'(f) be the set
of all compact simple paths v C X with endpoints 0y and o, which satisfy the
following property. Whenever z,y are points in v and D(z,y) is the diameter of
the arc of vy joining x and y we have

(3.6) d(z,y) 2 f(D(z,y)).
Then I is compact in the Hausdorff metric.

For this we will need Janiszewski’s [Jan12] topological characterization of [0, 1]
(see [New92, IV.5]):

LEMMA 3.6 (Topological Characterization of Arcs): Let K be a compact, con-
nected metric space, and let 01,0, € K. Suppose that for every z € K — {01, 02}
the set K — {x} is disconnected. Then K is homeomorphic to [0,1]. |

Proof of Theorem 3.5: Let H = H(X) denote the space of compact nonempty
subsets of X with the Hausdorfl metric dy. Let v be in the closure of T" in H.
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Then + is connected, compact, and vy O {01,02}. We now use Lemma 3.6 to show
that «y is a simple path. Indeed, suppose that € v — {01, 02}

We show that o1 and o are in distinct components of v — {z}. Let {y,} be
a sequence in I' such that dy(vn,7) < 1/n, and let {z,} be a sequence with
Tp € Yo and d(zn,z) < 1/n. For each n let 43! be the closed arc of v, with
endpoints 01 and ., and let v2? be the closed arc of +y,, with endpoints z,, and os.
By passing to a subsequence, if necessary, assume with no loss of generality that
the Hausdorff limits v** = lim+3! and 4°2 = lim~y? exist. If p, € ¥3!, gn € 752,
then d(pn,qn) > f(d(pn,zr)), since v, € T(f). By taking limits we find that
if p € v and g € ¥*2, then d(p,q) > f(d(p,z)). Consequently, v** — {z} and
%2 — {x} are disjoint. Because ¥°* U~°? = v and ¥°!,v° are compact, the set
v ~ {z} is not connected. Hence, by Lemma 3.6, v is a simple path.

It remains to prove that v € T'(f). For any simple path 8 C X with endpoints
01,09, let R(f) be the set of all (z,y) € B x F such that z belongs to the subarc
of 3 with endpoints 0; and y. With arguments as above, it is not hard to show
that lim R(v,) = R(7), in the Hausdorff metric on X x X. Since f is continuous,
it then easily follows that v € I'(f). The details are left to the reader. (Actually,
one can see that this statement is not essential for the proof of Theorem 1.1.
There, we only need the fact that the Hausdorff closure of I'(f) is contained in
the set of simple paths.) ]

Proof of Theorem 1.1: We start with the proof of the second statement, and
first assume that a,b # co. Let o] and o5 be vertices of 072 closest to a and b,
respectively. Let ws be LERW from of to o} in §Z?, and let wj be a path from
a to b, obtained by taking the line segment joining a to a closest point a’ on ws,
taking the line segment joining b to a closest point ¥’ on ws, and taking the path
in ws joining o’ and b’. Then the Hausdorff distance from ws to wj is less than
26. Let Py be the law of wj. Let p be some subsequential weak limit of Ps as
6 — 0. Then it is also a subsequential scaling limit of P;. Let m be large. By
Lemma 3.1, there is an R,, such that with probability at least 1 — 2™"1 we
have ws C B(o1,Rm)- Foreach j € N, let z{, el zi;j be a finite set of points in
R? such that the open balls of radius 277~2 about these points cover B(0;, Ry).
For each j € N, let €7 € (0,1) be sufficiently small so that

(3.7) Ps[A(z],279,eM)] < 27m 720 ),

for all i = 1,...,k;, and for all § > 0. Such € exist, by Lemma 3.4. Finally,
let fn: (0,00) — (0,00) be a continuous monotone increasing function satis-



244 0. SCHRAMM Isr. J. Math.

fying fm(2277) < 273 min(e]*,277) for each j = 1,2,... and sup,.q fm(s)
273 min(eT, 1/2).
Let X,,, be the space of all compact nonempty subsets of B(o1, R,,,), and set

UUA 127971 e,

j=1i=1

N

Note that
(38) Pg(ﬁQm) < 2—m’

for all § and m. Also note that if we set X := B(0,, R,) and f := f,, in Theorem
3.5, then

(3.9) Qm C T :=T(fm).

Indeed, suppose that v € Xy, is a path in X joining ¢ and b and v ¢ I';,,. Then
there are z,y € v and w contained in the arc of ¥ joining « and y such that
dist(z,y) < 2f(dist(x,w)). Since sup f < 274, we have dist(z,y) < 273. Let j
be such that 2=9+! < dist(z, w) < 277+2. Then

dist(z,y) < 2f(dist(z, w)) < 2f(277%%) 27972, dist(z,y) < 27 %€

Let i € {1,...,k;} be such that dist(z, 2/) < 2772 Then dist(z/,w) > 277 and
z,y € B(2, 2 371). Consequently, since d(z,y) < €]*, we have

v € Az, 27771, €m).

This proves (3.9).
By (3.8) and (3.9), we get P5(-T,,) < 27™. Theorem 3.5 tells us that 'y, is
compact. Therefore, we also have u(-I'y,) < 2™, and so

u(ﬂﬂ?%) =0

This completes the proof for the case a,b # oo, because each element of | J,, ',
is a simple path.

The proof when a or b is oo is similar. One only needs to note that Lemma
3.4 is valid when 29 = oo and the distances are measured in the spherical metric.
Indeed, the basic harmonic measure estimate Lemma 2.1 is also valid in the
context of the spherical metric.
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The proof of the first statement of Theorem 1.1 is also similar. The details are
left to the reader. 1

Note that the first statement of Theorem 1.1 implies that for almost every
subsequential scaling limit path v from a to 8D, the closure of v N D intersects
dD in a single point. This fact is easy to deduce directly, since it is also true for
the image of SRW starting near a and stopped when 8D is hit.

4. First steps in the proof of Theorem 1.3

Throughout this section we assume Conjecture 1.2. Let o be random, with the
law of the scaling limit of LERW from 0 to 8U. From Theorem 1.1 we know that
o is a.s. a simple path.

Recall that if D ¢ D’ g C are simply connected domains with 0 € D, then
the conformal radius of D’ is at least as large as the conformal radius of D. This
follows from the Schwarz Lemma applied to the map f5! o fp: U— U.

For each t € (—o0,0], let g, be the subarc of o with one endpoint in U
such that the conformal radius of U — o0y is expt. It is clear that o; varies
continuously in t. Let f;: U — U — o¢ be the conformal map satisfying f:(0) =0
and f{(0) = expt. By Lowner’s slit mapping theorem [L6w23], there is a unique
continuous ¢ = {,: (—00,0] — U such that the differential equation (1.1) holds.
Let { = (e (—00,0] = R be the continuous function satisfying {(t) = exp (zE ®))
and (| (0) € [0,27). Our goal is to prove

PROPOSITION 4.1: The law of E is stationary, and E has independent increments.

o~

This means that for each s < 0 the law of the map t +— ((s + ) restricted to
(—00,0] is the same as the law of E, and that for every n € Nand tp < ) <

- € tn, <0, the increments C(t;) — E(to),z(tg) — (), .. .,E(tn) ~ {(tn_1) are
independent. The proof of this proposition, as well as the next, will be completed
in later sections.

Note that Conjecture 1.2 implies that the distribution of ¢ is invariant under
rotations of U about 0. Let ¢! be random with the law of o conditioned to hit
QU at 1. If X denotes the (random) point in o N AU, then ¢! has the same law
as A" lo. It turns out that Proposition 4.1 will follow quite easily from

PROPOSITION 4.2: Assume Conjecture 1.2. Fix somet < 0. Take 0! and o to
be independent. As above, let o, be the compact arc of ¢ that has one endpoint
on OU and such that the conformal radius of U — o, is exp(t). Let q(t) be the
endpoint of o, that is in U. Let ¢ be the conformal map from U onto U — o,
satisfying ¢(0) = 0 and ¢(1) = q(t). Then o, U ¢(0!) has the same law as o.
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Now comes an easy lemma about LERW, and Proposition 4.2 will be obtained
from this lemma by passing to the scaling limit. The passage to the scaling limit
is quite delicate. Recall the definition of the graph G(D,§) approximating a
domain D, from Section 2.

LEMMA 4.3: Let § > 0 and t < 0 be fixed, and let D g C be a simply connected
domain with 0 € D. Let § be LERW from 0 to 8D in G(D,d). Let B, be
the compact arc in § such that §; N 8D is an endpoint of B; and such that the
conformal radius of D — f3; is exp(t). Let ¢:(t) be the endpoint of §; that is not
on OU. Set D, = D — [3;. Then the law of 8 — 3; conditioned on B; is equal to
the law of LERW from 0 to 8Dy, conditioned to hit q;(t).

Proof: There are several different ways to prove this lemma. We prove it using
the relation between LERW and the UST. Suppose that « is a path such that
B: = a has positive probability. We assume for now that the endpoint q of a
which is in D lies in the relative interior of an edge e of §Z2 (this must be true
except for at most a countable possible choices of t), and set & := a—e. Let § be
the endpoint of & in D. Let T be the UST on G¥ (D, §), the wired graph of D.
Then 3 may be taken as the path in T from 0 to §D. We may generate T using
Wilson’s algorithm with root 8D, and starting with vertices v; = ¢ and vo = 0.
Conditioning on §; being equal to « is the same as conditioning on a C 4, which
is the same as conditioning on the LERW LE; from v; to 8D to be & and that
the LERW from v, to LE; hits § through the edge e. This completes the proof
in the case where g is not a vertex of §Z?. The case where g € V(§Z?) is treated
similarly. |

5. Getting uniform convergence

The principle goal of this section is to state and prove Proposition 5.5 below.
The main point there is that Conjecture 1.2 implies that the weak convergence
of loap erased random walk in a domain D C U is uniform in D.

The first lemma shows that it is unlikely for a simple random walk to get far
away from the boundary of a domain D after getting close to 0D but before
hitting 8D, even if the walk is conditioned to hit dD at a certain set of vertices

Q.

LEMMA 5.1: Let K be a compact connected set in U that contains U but with
0 ¢ K. Let F be a compact subset of U — K, and let ¢ > 0. Then there is a
81 > 0 with the following property. Let K' be a compact connected set in U with
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K’ 5 0U and dyy) (K, K') < 01/5. Set D =U — K'. Let § € (0,6,/5), and let
Q C VY(D,8) be nonempty. Let RW? be the random walk on G(D, ) starting
at 0 that stops when it hits Vg(D, §), conditioned to hit Q. Then the probability
that RW® will reach F after visiting some vertex within distance §; of K is less
than e.

Proof: We need to recall some basic facts relating the conditioned random walk
RW¥ to the unconditioned random walk RW (that stops when hitting V5(D, 9)).
First recall that RW® is a Markov chain. (This is easy to prove directly. See also
the discussion of Doob’s A-transform in [Dur84, §3.1].) Let vy be some vertex,
to € N, and W a set of vertices. Let 7 = 7w be the least ¢ > tg such that
RW?(t) € W, if such exists, and otherwise set 7 = 0o. For w € W let

aw (vo, w) := Pr < 00, RW?(7) = w | RW®(t5) = vy},
and let dw (vo, w) be the corresponding quantity for RW. Then

aw (vo, w)h(w)
(6.1) aw (v, w) = e ,
where h(v) is the probability that RW hits ) when it starts at v. This formula
is easy to verify.

Let W, be the set of vertices v of G(D, §) such that h(v) < €h(0)/5. By (5.1),

3 awi(0,w) < (¢/5) ), awi(0,w) < ¢/5.
weW, weW;
Consequently, the probability that RW® visits W, is at most €/5.

Let p be the distance from F to K, and assume that 1006, < p. Then an easy
discrete Harnack inequality shows that h(v)/h(0) < Cy for all vertices v in F,
where Cp is some constant which does not depend on K’ or §, but may depend
on F. There is a first vertex, say ¥, visited by RW® such that the distance from
7 to K is at most ;. Let W, be the set of vertices of G(D,d) in F. If v ¢ W1,
then h(7) > €h(0)/5 and hence

~ -~ h(w) h(0) -1 N
(5.2) wEZWZ aw, (v, w) = ,,,;Vz aw, (v,w)ﬁo—)—mj < 5Coe w:L:‘Vz aw, (U, w).
But since K is connected, Lemma, 2.1 shows that the probability that a simple
random walk starting at ¥ will get to distance p/2 from ¥ without hitting V5(D, 9)
is bounded by Cy(d;/p)€?, where Cy,Ca > 0 are absolute constants. By (5.2),

Y awy(B,w) < 5Coe " C1(61/p) %"

weW,
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Consequently, if &; is chosen sufficiently small, the probability that RW® starting
at v will hit W3 is less than ¢/5, provided v ¢ W;. But P[v € W] < €/5, since
the probability that W) is visited is at most ¢/5. The lemma follows. |

In the following, we let RWP*? denote SRW on G(D, §) that stops when it hits
Va(D, §), and let RWP*2 denote RWP* conditioned to hit @, if @ ¢ V(D, d).
Suppose that v is a probability measure on Vg(D,(S) and p is random with law
v; then RWP*%" will denote RWP*® conditioned to hit p given p. In other words,
the law of RWP%¥ is the convex combination of the laws of the walks RWP&1P}
with coefficients v({p}).

LeEMMA 5.2: Assume Conjecture 1.2. Let D C U be a Jordan domain with
0 € D. Let ¢: D — U be the conformal homeomorphism from D to U satisfying
#(0) =0, ¢'(0) > 0. Then as § — 0 the law of the pair

($(LE(RWP*)),8U n ¢(RWP))
tends weakly to the law of the pair (o,0U N o).

This lemma is easily proved using arguments as in the proof of Lemma 5.1,
and is therefore left to the reader.

If X and Y are random closed subsets of U, we let EU(X ,Y') denote the Pro-
horov distance between the law of X UOU and the law of Y U dU (see-Section 2,
towards the end), where the metric dyy (@) is used on H(U). If F is a subset of T,
we set JF(X, Y):= EU (X UU-F,YUU - F). This is a measure of how much
X and Y differ inside F.

The next lemma shows that up to a specified accuracy the loop-erased random
walk on a domain D can be approximated by the loop-erased random walk on
another domain D', where D’ is selected from a finite collection of smooth Jordan
domains.

LEMMA 5.3: Let € > 0. Then there is a §y > 0 and a finite collection of smooth
Jordan domains Dy, D, ...,D, C U with 0 € D; for all j, and with the following
property. Let D C U be a simply connected domain with B{0,¢) C D, let
6 € (0,8) and let Q C V)(D,é) be nonempty. Let F. be the component of 0
in the set of points in D that have distance at least € to 8D. Then there is a
D' € {Dy,...,Dy,} and a probability measure v on V)(D', §) such that

(5.3) dr, (LE(RWP4Q) LE(RWD 9" < e.

Moreover, we may require that the Hausdorff distance from 0D to 8D’ is at most
€.
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Proof: We first prove the lemma for some specific D and Q) as above. By Lemma
5.1, there is a §; > 0 such that with probability > 1 —¢/5 the walk RWP*? does
not reach F, after exiting Fjs,, provided é € (0,61/5). Also, there is a &} < &;
such that with probability > 1 — ¢/5 this walk does not reach Fj, after exiting
Fy;. Let D' C D be a smooth Jordan domain with D’ O Fj, and such that the
Hausdorff distance from 8D’ to AD is less than e. For every § < 81/5, let v = v
be the hitting measure of RW?%9 on V3(D’,§). Observe that we may think of
RWD"9 ag equal to RWP*9 stopped when Va(D', 8) is hit.

Let A; be the event that RWP*%? does not visit F, after exiting Fj,, and let A,
be the event that RWP*< does not visit Fy, after exiting Fi;. Note that on the
event A;NAs, after exiting F,;; the random walk does not visit any vertex v which
was already visited prior to the last visit to F,. Consequently, the intersection of
F, with the loop erasure of the walk does not change after the first exit of Fy;.
Since we may couple RWP R equal RWP%@ gtopped on Vs(D', 8), this means
that we may obtain a coupling giving F, N LE(RWP%9) = F. n LE(RWD”‘S’”) on
A; N A, Since P[A; N Ag] > 1 — €/2, this proves the lemma for a single D.
However, the same pair (D', d;) would work for every D" with 8D"” sufficiently
close to 8D in the Hausdorff metric. Hence, the compactness of the Hausdorff
space of compact, connected subsets of U — B(0,¢) completes the proof. |

LEMMA 5.4: Let D C U be a smooth Jordan domain with 0 € D, let 6 > 0, let
q € V9(D,6), and let RW? := RWP#1e}  Then the law of LE(RWY) is uniformly
continuous in q. That is, for every € > 0 there is a §; > 0 such that

dp(LE(RWY), LE(RW?)) < €
provided § € (0,61), and |q — ¢'| < &;.

Proof: Let 6y > 0 be very small. It is easy to see that when |¢ — ¢/| is small
we may couple RW? and RW? so that with probability at least 1 — ¢/5 they are
equal until they both come within distance 8y of D. Hence, the lemma follows
by using an argument similar to the one used in the proof of Lemma 5.3. |

We now come to the principle goal of this section, proving that Conjecture
1.2 implies that the weak convergence of loop erased random walk in a domain
D c U is uniform in D.

PROPOSITION 5.5: Assume Conjecture 1.2, and let € > 0. Then thereisad; > 0
with the following property. Let D C U be a simply connected domain with
B(0,¢€) C D, and let F, be the connected component of 0 in the set of all points
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z with d(z,0D) > €. Let é € (0,61), and let @ C VI(D,6) be nonempty. Let
¢ be the conformal homeomorphism from U to D that satisfies $(0) = 0 and
¢'(0) > 0. Then there is a random A € 8U independent of o' such that

dr, (#00ah), LE(RWDv‘*vQ)) <e

The main point here is that é; does not depend on D or on Q.

Proof: Let €¢; > 0 be much smaller than e. Suppose that D’ is a domain in the
list appearing in Lemma 5.3 that satisfies the requirements there with €; in place
of €, and let v be as in that lemma. Fix some small ;. For each q € V§(D’, )
let v, be restriction of the hitting measure of RWD'S to B(q,61) N Va(D, ),
normalized to be a probability measure. Lemma 5.4 implies that we may replace

v by a probability measure v/, which is a convex combination of such v,, while
having

(5.4) dr, (LE(RWP"5¥) LERWD'#¥)) < ¢,

provided 4; is sufficiently small. Moreover, by Conjecture 1.2, provided §; is
sufficiently small and § € (0, 8;), we have

(5.5) dr, (LERWP"9¥a) y(r01)) < 1,

where A\ € AU is random and independent of 0!, and % is the conformal home-
omorphism from U to D’ satisfying ¥(0) = 0 and ¢’'(0) > 0. Since the list
Dy,...,D, in Lemma 5.3 is finite, we may take §; to be independent of D.
Consequently, there is a random A € U independent of ¢! with

(5.6) dr., (LERWP "), y(2oh)) < e1.

Provided we have chosen ¢, sufficiently small, we have that |(¢71(2)) — 2| < ¢

for z € F,/5. Proposition 5.5 now follows from (5.3) with €; in place of € and
from (5.4), (5.5) and (5.6). |

6. Recognizing the Léwner parameter as Brownian motion

Proof of Proposition 4.2: Let 8 := LE(RWY®) and let 8;, D; and q1(t) be
defined as in Lemma 4.3, where D := U. Set  := LE(RWP*%11(®)) where
RWP8a1(®) ig taken to be independent of # conditioned on ;. Using Conjecture
1.2, Eu(ﬁ, o) — 0 as § = 0. By (2.1), this means that we may couple 3 and ¢
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(that is, make them defined on the same probability space, where they are not
necessarily independent) such that § Eoin H(U), where 5 denotes convergence
in probability as 4 — 0. Since o is a.s. a simple path, this also implies that
Bt E’ Ot.

Let ¢ be the conformal map from U onto U — oy that satisfies $(0) = 0
and ¢' (0) > 0, and let ¥ be the similarly normalized conformal map from U
onto U — B;. Because §; 5 0z, it follows that 12 LA $, in the topology of uniform
convergence on compact subsets of U.

Set Px(2) := {/;()\z) and ax(z) = 5()\;:) for A € OU. Given every ¢ > 0 and
a closed set A C U let F,(A) be the connected component of 0 in the set of
points with distance at least € from A (or the empty set, if d(0, A) < €), and let
W.(A4) :=U - F,(A).

By Proposition 5.5, for every € > 0 there is a random A € U independent of
o! (but not of 3;) such that gpc(gt)(zz,\(al),'y) — 0. (The law of A may depend
on § and €.) Observe that P[Fy.(0:) C Fe(Bt)] = 1 as § — 0, because S3; E)O't.
Therefore, we may conclude that &\Fg((at)({/;)\(al))')’) — 0. Since this is true for
every € > 0, it follows that we may choose X = As so that EU—U, (12;,\(01),7) — 0,
as  — 0. Because 1:[;)‘ 5:5)\, we therefore also have JU_W (5,\(01),7) - 0, that
is, EU(at U 5,\(01), ot U7) = 0. Since B; U~ has the same law as 3 (by Lemma
4.3), and since f; —P>at, this gives,

(6.1) du(or U ¢x(0"), B) = du(0r U da(e"), 8, U7) = 0.

Let A\* be random in OU with a law that is some weak {subsequential) limit
of the law of A as § — 0. It follows from (6.1) that oy U B (o!) has the same
law as ¢. In particular, it is a simple path. The only possibility is therefore that
(Z)‘- = ¢ a.s., which completes the proof of Proposition 4.2. |

Proof of Proposition 4.1: Recall that ¢ = {,: (—o0,0] — 9U is the Lowner
parameter associated to the LERW scaling limit ¢ C U. Let C~ be the Lowner
parameter associated with the path o', and let ft be the associated solution of
the Lowner system. Note that ¢(0) = 1, since o' N dU = {1}. Fix some to < 0.
Using Proposition 4.2 and its notations (with ¢y replacing t), we know that the
path & := oy, Up(o!) has the same law as 0. Let f; be the solution of the Lowner
system associated with the path &, and let ¢ be the associated Léwner parameter.
Then ¢ has the same law as ¢, by Proposition 4.2. Set X := |¢'(0)|/4#'(0). When
t < tg, we have

ft(z) =¢o ft—to()\z),
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because the right hand side is a suitably normalized conformal map from U onto
U — ;. We differentiate with respect to ¢, and use (1.1), to get

0 ; 1 F 9 ¢
§ft(z) =¢ (ft—to()‘z))é'ift—to()‘z)

. - ¢t —to) + Az 0 AT (t—to) + 2
= ¢ (fi—t, (M)A f_, (M2)>——" = 2f/(z) —2—""=.

$feta DIy 02) = T = 2 [ =
Consequently, it follows that ¢(t) = A"2((t — to) for t < to. It is clear that { = ¢
for t € [to,0]. Continuity of ¢ gives A=1 = ((t0)/¢(0) = ¢(to). Since ¢ and ¢ are
independent, and ¢ has the same law as ¢ conditioned on ¢(0) = 1, Proposition
4.1 follows. ]

We shall need the following

THEOREM 6.1: Let a(t), t > 0, be a real valued process (that is, a random
function a: [0,00) — R). Suppose that a is continuous a.s. and for every n € N
and every (n+1)-tuple0 = tg <ty <ty < -+ < by, the incrementsa(t;)—a(t;—1),
j = 1,...,n, are independent. Then for every fixed sy € (0,00), the random
variable a(so) is Gaussian.

This theorem follows from the general theory of Lévy processes. An entirely
elementary proof can be found in Section 4.2 of [It661].

COROLLARY 6.2: There is a constant ¢ > 0 such that the process ((t) has the
same law as B(—ct), where B(t) is Brownian motion on U started at a uniform
random point.

Proof: That {(t) has the same law as B(—ct) for some ¢ > 0 follows immediately
from Proposition 4.1 and Theorem 6.1. The fact that ¢ > 0 is clear, since the
LERW scaling limit is not equal a.s. to a line segment. ]

7. The winding number of SLE

Let x > 0, let B(t) be Brownian motion on dU started at a uniform random point
on JU, and set

(7.1) ¢ = Cx == B(—kt).

Definition 7.1: Let & denote the set of all £ > 0 such that the Lowner evolution
[t defined by (7.1), (1.1) and (1.2) is a.s. for every ¢ < 0 a Riemann map to
a slitted disk. For k € &, let £, denote the {random) path defined by £.(t) =
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f:(¢(t)). That is, & is the path in U such that f; is the nomalized Riemann map
to U — &([t,0]).

The random process &, ([t, 0]), t € 0, will be called stochastic Lowner
evolution (SLE) with constant .

As before, we let B: [0,00) = R be the continuous map satisfying B = expiB
and B(0) € [0, 27).
THEOREM 7.2: Let k € 8 Let T < 0, and let 0,(T) be the winding number of
the path &.([T,0]) around 0, that is 6.(T) = arg(£.(0)) — arg(&x(T)), with arg
chosen continuous along .. Then for all s > 0,

(7.2) PUT — log [€x(T)|| > s] < Coexp(=Cys),
and
(7.3) P [|0N(T) — B(0) + B(—&T)| > s] < Coexp(~C19),

where Cy, C, > 0 are constants, which depend only on .

Loosely speaking, the theorem says that ¢ + ig(—nt) is a good approximation
of the path log&,(t). A consequence of the theorem is that 6,(t)/v/kt converges
to a gaussian of unit variance as T' — —~o0.

Before we prove the theorem, it is worthwhile to have another look at the maps
® defined by ®(z,t,s) := f71(fi(z)), t < s <0, which were discussed in Remark
1.5. For every t < s < 0 the set 77 := U — ®(U,t,s) is a path in U. If r € (¢, s),
then 7§ = 7% U ®(1],r,s). Therefore, when s is held fixed and ¢ is decreasing,
the path ~{ is growing from its endpoint inside U, and if ¢ is held fixed and s
is increasing, the path +; deforms conformally and a new arc is added to it to
reconnect it to U.

Proof: Let f; be defined by (7.1), (1.1) and (1.2). Set £ := . Let w(t,2) =
it (fr(2)) = ®(2,T,t) (t € [T,0)), and let y = y(t, z) := arg w(t, 2), where argw
is chosen to be continuous in ¢.

By Remark 1.5, w satisfies the differential equation
B(—kt) +w

(74) Bt'w = —wm,

where 8; denotes differentiation with respect to ¢. Set z = z(t, 2) := log |w(t, z)|.
Then w = exp(z + iy), and (7.4) can be rewritten

sinh z + i sin(B(—~kt) — y)

7.5 Oz + 10y = < .
(7-9) ' v coshz — cos(B(—xt) — y)
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Let z; be a random point on JU, chosen uniformly, and independent of the
Brownian motion B. Then w(0,2;) = fr(z1) is some point on the boundary of
Dy := fpr(U). Note that 8Dr is a connected set that contains JU and intersects
the circle B(0,exp(T)), by (2.2). Set A, := {z € Dr: |z| > exp(T + 5)}.
It follows from the continuous version of Lemma 2.1 for Brownian motion that
the harmonic measure of A, in D at 0 is bounded by O(1)exp(—Css), for some
constant Cy > 0 and every s € R; that is, at zero, the bounded harmonic function
on D7 that has boundary values 1 on A, and has boundary values 0 on 8D — A,
is bounded from above by O(1)exp(—Css). Since harmonic measure is invariant
under conformal maps, we conclude that the measure of fr'(A,) is at most
O(1)exp(—Cqgs). This means that

(7.6) Pllog|w(0,21)] - T > s] = P[log|fr(z1)| — T > s] < O(1)exp(—Chs).

Now set zp = B{—«T). Then £(T) = w(0,2), and so we need to relate
|w(0, 20)| and |w(0, 21)|. Let 7 be the least t € [T, 0] such that w(t, 2,) = B(—kt),
if such a t exists, and set 7 = 0 if not. Note that |w(¢,z)| = 1 while ¢t < 7,
and jw(t,z1)] < 1for t € (7,0]. Also observe that conditioned on 7 < 0, the
law of the process (w(t,z1): t € [7,0]) is the same as the law of the process
(w(t +T —7,20): t € [r, 0]) Consequently, the random variable w(r — T, z;)
(where B is taken as two-sided Brownian motion and (7.4) is extended to the
range t > 0), conditioned on 7 < 0, has the same distribution as the random
variable w(0, 29). By (7.5), 8;z < 0, and therefore |w(r — T, 21)| < |w(0,21)| on
the event 7 < 0. Thus, for every s € R we have

P[lw(0,2)| > s| 7 < 0] > P[lw(0,2)| > s].
Because |w(0, z1)| = 1 when 7 = 0, we may drop the conditioning on 7 < 0. Now
(7.6) gives
Pllog|é(T)| - T > s] = Plog |w(0, z0)| — T > s] < O(1)exp(—Czs).
On the other hand, the Koebe 1/4 Theorem (2.3) gives

expT = |fr(0)] < 4inf{|z]: 2 ¢ fr(U)} < 4[6(T),

and so log |¢(T)| + log4 > T always. This completes the proof of (7.2).

Now let 71 be the least t € [T,0] such that z(t) = log|w(t, 20)| < —1, and set
71 = 0 if such a t does not exist. Since z(t) .is monotone decreasing, we may
write y(t) as a function of z: y = g(z). By (7.5),

sin(B(—xt) —
gl(x(t)) = ( s(inhlZ(t) ?/(t))
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and hence
|9 (z(1))] < |sinhx(t)|_1.

And so we get

z(11)

-1
(7.7) ly(0) — y(m)| = / |’ (z)| dz < /~ lsinh:t:l_1 dz < o,

z(0)

Let ¢(s,t) := fi1(€(s)) for T < s < ¢t < 0. Then ¢ is continuous and its
image does not contain 0. Hence, it may be considered as a homotopy in C— {0}
from the path ¢(s,0) = £(s), s € [T, 0], to the concatenation of the inverse of the
path ¢(T,¢t) = £ (&(T)) = w(t, %), t € [T,0], with the path ¢(t,t) = B(—xt),
t € [T,0]. Therefore, its winding number is the sum of the corresponding winding
numbers. This means that

8(T) = B(0) — B(—&T) + y(T) - y(0).

By (7.7), it therefore suffices to prove the appropriate bound on the tail of
ly(m1) — y(T)].

Let |y|,, := min{|y — 2mn|: n € Z}. Set to = T, and inductively, let t; be
the first ¢t € [t;_1,0] such that 7/2 = lg(—wt) —g(—ntj_l) o and set t; =
0 if 1o such t exists. Equation (7.5) shows that J,y(t) has the same sign as
sin(B(—xt) — y(t)), and hence
<0, att=s,

2

8 |y(t) - B(—rs)

for every s € (T, 0). In other words, y(t) is always moving in the direction which
would decrease |exp(iy(t)) — B(—+t)|. Consequently, for every j € N, if there is
an s € [tj,t;4+1) such that ‘y(s) - §(—ntj)’2 < /2, then this is satisfied also for
all ¢ € [stj41), Decause y(t) " cannot get out of the set
{p e R lp - E(—mt]~)|21r < /2} while §(—fct) is in it. This implies that
ly(ti+1) —y(t;)| < 2. Hence |y(r1) —y(T)| < 2rmin{j € N: t; > 71 }. Therefore,
for every a >0 and n € N,

(7.8) Plly(n) —y(T)| > 2xn) < P[n - T > a] + Plt, < T +al.

The first summand on the right hand side is bounded by O(1)exp(—Csa), for
some constant C3 > 0, by (7.2). To estimate the second summand, observe that
conditioned on ¢, < T + a, we have probability at least 2="~! for the event

(7.9) B(—« (T +a)) - B(—&T) > nn/2,
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because when ¢, < T +a and B(—« (T +a)) > B(—kts) > --- > B(—rto), we
have (7.9). However, (7.9) has probability

(27ran)‘1/2/ exp(—s?/(2ka)) ds < O(1)exp(—n?/Cia),
nw/2
and hence

Pt,<T+a] < O(l)2"exp(—n2/C4a).

We choose a to be n times a very small constant. Then our above estimates,
together with (7.8), give

P|ly(m1) — y(T)| > 2wn] < O(1)exp(—Csn),

with the constants depending only on k. This completes the proof of the theorem.
]

8. The twisting constant of LERW

Consider some scaling limit measure P of LERW from 0 to dU, and let v be
random with law P. Assuming Conjecture 1.2, we have established that SLE
with some constant k, has law P. In this section we show that x, = 2, and
thereby complete the proof of Thereom 1.3.

Let € € (0,1), let . be the connected component of v — B(0,€) which has a
point in U, and let W (., 0) be the winding number of v, around 0, in radians.
That is, W(7.,0) is the imaginary part of f'Ye 27 'dz. By symmetry, it is clear
that E[W (v, 0)] = 0. We shall show that

(8.1) E[W (7,0)?] = 2log(1/¢) + O(1)/log(1/e).

Based on this and the results of Section 7, it will follow that x, = 2.

The proof of (8.1) will use Kenyon’s work [Ken98a]. The overall idea of the
proof is very simple, and based on the relations between UST and domino tilings.
We now briefly review the relations between the UST on Z? and domino tilings,
and the height function for domino tilings. For a more thorough discussion, the
reader should consult [Ken98al.

A domino tiling of the grid Z? is a tiling of R? by tiles of the forms
[kyk + 1) x [,7 + 2] and [k, k + 2] x [j,j + 1], where k,7 € Z. A domino
tiling of Z? may also be thought of as a perfect matching of the dual grid
((1/2)+2Z) ?. (A perfect matching of a graph G is a set of edges M C E(G) such
that every vertex is incident with precisly one edge in M.)
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Let us start with finite graphs. Let D be a simply connected domain in R?
whose boundary is a simple closed curve in the grid Z?, and let G := Z?N D.
Let po be some vertex in 8D N Z?, which we call the root. Let G be the graph
((1/2)2%)n D with po and its incident edges removed. Then there is a bijection,
discovered by Temperley, between the set of perfect matchings on G and spanning
trees of G.

Temperley’s bijection (see Figure 8.1) works as follows. For every edge [v,u]
in the matching M such that v € Z?2, we put in the tree the edge e, whose center
is u. This gives the set of edges in the tree T. If [v,u] € M is as above, we may
orient the edge e, away from v, and then the tree T will be oriented towards the

root po.

00 G G matching and tree

Figure 8.1. Temperley’s bijection. On the right, the arrows are edges in
the matching that contains vertices of Z?2, the solid segments are other
edges in the matching, and the thin lines are edges in the tree.

Temperley’s bijection works also in more general situations. There is a simple
modification to make it work for the wired graph associated to the domain D
(recall the notion of the wired graph from Section 2). Also, given a perfect
matching on all of (1/2)Z?2, there is an associated (oriented) spanning forest of
Z2. The collection of all domino tilings of Z?2 has a natural stationary probabil-
ity measure (of maximal entropy), and for a.e. domino tiling the corresponding
spanning forest is a spanning tree. Temperley’s map from perfect matchings on
(1/2)Z? to spanning forests of Z2 maps the cannonical probability measure on
the set of domino tilings to the law of the UST of Z2.

Let G and G be as above, and let G be the graph of the domino tiling, that
is, the union of the squares of edge length 1/2 with centers at the vertices of
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G, thought of as a subgraph of the grid (1/4,1/4) + (1/2)Z?. Associated to a
domino tiling of Gisa height function h defined on the vertices of G. Here
is the definition of h. Pick some vertex vg € V(G) and some ag € R, and set
h(vp) = ap. Color a square face of the grid (1/4,1/4) + (1/2)Z? white if its
center is a vertex of Z? or if it is contained in a face of Z2, and black otherwise.
If [u,v] € E(G) is on the boundary of a domino tile in the tiling, then we require
that h(v) — h(u) = 1 if the square to the right of the directed edge [u,v] is white
and h(v)—h(u) = —1 if the square to the right of [u,v] is black. These constraints
uniquely specify the height function h (except that the choices of vy and ag are
arbitrary).

We will work in the upper half plane H := {z € C: Imz > 0}. Let G5(H) :=
GY (H, §), the wired graph of mesh 4 associated with the domain H, and @5(]1‘11) =
HN((6/4,8/4)+(5/2)Z%). The discussion above carries through for the grid 672,
in place of Z2. (Although the distance between adjacent vertices in the graph G
is §/2 when G C 672, we still work with the height function where the height
difference along an edge on the boundary of a tile is +1.) Temperley’s bijection
induces a measure preserving transformation between domino tilings of the grid
Gs(H) and the UST of Gs(H). (If we keep the orientation, then the UST is
directed towards OH.)

We normalize the height function associated to a domino tiling of Gs (H) by
requiring that h((6/4,6/4)) = 1/2. Then h(((2k + 1)6/4,6/4)) = (—1)¥/2, for
k € Z. If v is some vertex in G5(H), let h(v) be the average of the value of h on
the vertices of é,s(]HI) closest to v.

LEMMA 8.1: Let T be a spanning tree of Gs(H), and let h be the associated
height function. Let v € V(Gs(H)) be a vertex different from the wired vertex
OH, and let a be the real part of v. Let Q. be the path from v to OH in T,
considered as a path in the plane, and let Q, be the union of Q! with the line
segment joining the intersection @, N OH to a. Then —wh(v)/2 = W(Q.,v), the
winding number of Q!, around v.

This lemma is a special case of a more general observation made by Kenyon.
(Since Q, is a path with v as an endpoint, we define

W(Qy,v) := }l_I)I(l] W(Q, — B(v,7),v),

which is the same as W (Q, — B(v,6/2),v).)

Proof: Use induction on the length of the path Q. |
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Symmetry implies that E[h(v)] = 0 for all v € V(Gs(H)). Kenyon has shown
[Ken98a] that

(8.2) E[h(v)?] = 872 log(1/6) + O(1)

(provided that v stays in a compact subset of H). Hence E[W(Q,,v)?] =
2log(1/8) + O(1), which seems very close to a proof of (8.1}. However, to make
it into a proof of (8.1) requires some effort (it seems).

The advantage of the height function over the winding number is that the
height difference between two vertices can be computed along any path joining
them. On the other hand, to compute W(Q,,v), one might think that it is
necessary to follow (,, which is a random path. It is immediate that h(v)
is Y ; AjXj, where X; is the indicator of the event that a certain domino tile
is present in the tiling, and X; are some explicit easy to compute (non-random)
weights. This means that to calculate E[h(v)?] one needs to have a good estimate
for the behavior of the correlations E[x;x;] for small §. That’s how Kenyon proves
(8.2).

Recall that A(p,1,72) denotes an annulus with center p, inner radius r,, and
outer radius rp. The following result is an immediate consequence of [ABNW].

LEMMA 8.2: Let D C C be a domain, and let vy € 6Z? N D be some vertex.
Consider T, the UST on §Z2 N D, with free or wired boundary. Let ro > 2r, > 26,
and suppose that ry is smaller than the distance from vy to dD. Let A be the
annulus A := A(vg,r1,72), and let k{A) be the maximum number of disjoint
paths in T each of which intersects both boundary components of A. Then for
eachk € N

P[k(A) > K] < Co(rg/ry)@1 ¢,

where Cy, Cy > 0 are universal constants. [ |

LEMMA 8.3: Let D C C be some simply connected domain, and consider T, the
UST in GW (D, $) (wired boundary). Let po € D N dZ*. Given a set K C D,
let X(K) denote the maximum winding number around po of a path in T with
endpoints in K. Let 7 € (0,d(po,0D)/2). Then for each h >0 and s > 2,

P [X (Alpo,r/s,7)) > h] < Caexp(—C3h/log s) log s,
where Cy and C3 are absolute constants.

Proof: Set A := A(py,7/s,r), X := X(A). To begin, assume that s = 2 and that
T > 106. Let By, By, ..., By be a covering of A with balls of radius r/10, where
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N < Cy, with C4 some universal constant. Let vg € AN§Z? be some vertex. For
any vertex u, let W{(u) be the signed winding number around pg of the path in
T from vg to u. Consider neighbors v,w in 4, and let y be the UST path joining
vand win T. If v # [v,w], then v U [v,w] is a simple closed path, and hence
has winding number at most 27 around pg. This implies that |W(v) — W (u)]
is at most 27 plus the absolute value of the winding number of the edge (v, u]
around pog, and therefore |W{(v) — W(u)| < 3. Since any two vertices in A can
be connected by a path in A, the set {W(v): v € A} intersects every interval of
length 37 which lies between its maximum and minimum. From this it follows
that we may find vertices vq,v2,...,v, in A such that |W(v;) — W(vg)| > 3r for
j# k and n 2 X/6r. Since N < C4, we may find some ball B,, from the above
collection, satisfying |By, N {vq,...,vn}| = X/67Cy. However, if v,u € B,, and
|W (v) — W (u)| > 2n, then the path in T joining v and u must go around po. In
particular, it must cross twice the annulus A,, := A(cm,r/10,7/5), where ¢, is
the center of B,,. It follows that the number of disjoint crossings of A,, in T is at
least |By, N {v1,...,vn}|. Hence, by Lemma 8.2, for any fixed m the probability
that | B,,N{v1,...,vn}| > bis at most O(1)exp(—Csb), for some constant C5 > 0.
Consequently, P[X > h] < O(1)Cyexp(—Csh/67Cy), which completes the proof
in the case s = 2 and r > 104.

The case r < 100 is easy to verify, for then the combinatorial distance between
any two vertices in A is bounded, which implies that X is bounded (because
|W (v) — W{u)| < 3n for neighbors v, u).

If s > 2, then we may cover the annulus A with at most 2logs + 1 disjoint
concentric annuli with radii ratio 2. In order that X(A) be at least h, there
must be one of these smaller annuli A’ with X{A") > h/(2logs+1). The lemma
follows. 1

LEMMA 8.4 ([Ken98a]): Let p,q € H be any two points. Consider a uniform
domino tiling of the grid Gs(H) C H of mesh §, and let p',q' € V(Gs(H)) be
vertices closest to p and q, respectively. Then

. / AN -2
lim E[h(p')h(¢)] = 87" log s

ﬁ—q‘

It may be noted that the right hand side is invariant under conformal auto-
morphisms of H, since it is the log of the square root of a cross ratio of p,p, ¢, 7.
Let & € (0,1/4), let vy be a vertex of the grid §Z2 which is closest to i = /—1.
Fix some r € (0,1/4). Let Q, be as in Lemma 8.1, let 7} be the connected
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component of Q,, — B(vp,r) that intersects OH, and let Ws(r) be the winding
number of 48 around wvp.

PROPOSITION 8.5: Assuming r < 1/4,

(8.3) lim sup E[Wg('f‘)2] - 2log(1/r)‘ < Cg+/log(1/r),

§—0

where Cg Is an absolute constant.

Proof: Let v; be a vertex in 6Z? such that v; — vy — /3 € [0,6). Let V; be
the set of vertices of 6Z? whose Euclidean distance to {v, v} is in the range
(r/9,2r). Then, assuming that § < r/9, V; separates vy from v; and {vp, v1}
from OH in the grid 6Z%. Given a vertex v, let Q% be the union of @/, with the
line segment joining the intersection @, N H to 0. Set Q := J{Q5: v € Vp}.

Set X; := W(Q.;,v;), j = 0,1. By Lemma 8.1, we have X; = —mh(v;)/2, and
consequently, Lemma 8.4 gives

(8.4) lim E[XoX1] = 2log(1/r) + O(1).

Since Vj separates vg from vy, when conditioning on @, Xy becomes independent
of X;. Therefore,

(8.5) E[XoXi] = E[E[XoX1 | Q)] = E[E[X | Q] - E[X: | Q).
We shall show that for small 6 > 0,
(8.6) E[(Wg(r) ~E[X;|Q)°]| =0@), j=01
Using (8.5), this implies

E[W;(r)?] — E[XoX1] = O(1)VE[W;(r)?] + O(1).

Consequently, by (8.4),

limsup|E[W;(r)*] ~ 2log(1/r) + O(1) BWs(rF]| < 001,
-0
which implies (8.3). It therefore suffices to prove (8.6).

Let s := min{|v—1vo|: v € Q}. Given Q, let T’ be a UST of GW (B(vy, 5/2),9),
and let 7" be the UST of the graph obtained from Gs(H) by identifying the
vertices of ). Note that (by Wilson’s algorithm, say) T, the UST on G4(H), has
the same law as 7" U @ (as a set of edges). By the domination principle, given
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Q, we may couple 7" and T” so that E(T") D E(T”). Given @, we couple T and
T’ so that T D> T".

Let o be the path in T” from vy to dB(vg,s), and let a be the point where
a hits 0B(vg,s). Then E[W(a,v) | @] = 0, by symmetry, because given Q,
T’ is just ordinary UST on GY (B(vo,s/2),6). But « is also a path in T. Let
8 be the path in T from a to the endpoint of 78 near dB(vg,r). Then X¢ =
W (a,vo) + W(B,v0) + Ws(r), and therefore,
(8.7) Ws(r) — E[Xo | Q] = —E[W(a,v0) | Q] — E[W(8,v0) | Q]

= —E[W(8,%) | Q]
Let t > §. Note that if s < ¢, then there are at least two disjoint crossings in T'

of the annulus A(vg,t,7/10) (both on the path Q% v € Vp, which has minimum
distance to vg). Therefore, Lemina 8.2 gives

(8.8) P[s < t] < O(1)(t/r)°".
Fix some y > 2. By Lemma 8.3, we have

P[|W(ﬂ, w)| > t, 5> r/y] < O(1)exp(~Cst/ logy) logy.
Hence, using (8.8),
P[|W (5, )| > t] <Pls < r/y] +O(1)exp(~Cst/logy) logy
< 0(1)y~C" + O(1)exp(—Cjt/logy) logy.
Assuming that ¢ > 1, we may choose y = expv/t, and then get
P[|W (B, )| > t] < O(1)Viexp(~Cs V),

for some constant Cg > 0. This gives E[W(8,v)?] = O(1). But for every
random variable Y, we have E[Y?] > E[E[Y | Q]?]. Therefore, (8.7) implies
(8.6) for j = 0. The proof of (8.6) for j = 1 is entirely the same. This completes
the proof of the proposition. ]

PROPOSITION 8.6: Assuming Conjecture 1.2, k, = 2, where &, is the constant
such that SLE with parameter &, is the scaling limit of LERW.

Proof: Recall the definition of Wj(r), which appears above Proposition 8.5.
Set 7o = 1/2, and let 7; > 0 be very small. Let ¢: H — U be the conformal
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map satisfying ¢ (i) = 0 and ¢/(i) > 0. Let C; be the circle of radius r; about
i, j = 0,1, and set C} := 9(C;). Note that Zs(r1) = Ws(r1) — Ws(ro) is the
winding number around 7 of some arc on 7%, the LERW from a vertex near i to
OH in 6Z? N H, and the arc has one endpoint near the circle B(i,7y) and the
other endpoint near the circle dB(i,r1). It follows that Zs(r1) converges weakly
to a winding number Z(r;) of an arc 8 of ¥~*(¢.,) with endpoints on Cy and
C1, as & — 0 along some sequence, where . is the SLE curve with parameter
%o. Moreover, since we have good tail estimates on Zs(r;) (Lemma 8.3), from
the dominated convergence theorem it follows that

E(Z(r)Y] = }i_% E[Z5(r1)?).

Hence, Proposition 8.5 gives E[Z(r1)?] = 2log(1/r1)+0(1)\/log(1/r1). Observe
that for any path o in H — {i}, the winding number of @ around i minus the
winding number of ¢(«) around 0 is bounded by some constant. Consequently,
the winding number W’ of ' := ¢(8) around 0 also satisfies

(8.9) E[W’z] = 2log(1/r) + O(1)v/log(1/m1).

Set t; = logr;, j = 0,1, let B be the arc & (t): [t1,to) = U, and let W be the
winding number of B around 0. By Theorem 7.2, with high probability, the log
of the absolute value of the endpoints of 8 is not far from the log of the absolute
value of the endpoints of §’. Therefore, it is easy to conclude with the help of
Lemma 8.3 that

(8.10) E[(W — W")?] = 0(1).
We know from Theorem 7.2 again that
E[W?] = k,|t1| + O(1)v/[t4].
Combining this with (8.9) and (8.10) gives
(2 — ko) Ita] = O(1)V/1t4].
Letting t; — —oo now completes the proof. |

Proof of Theorem 1.3: Immediate from Corollary 6.2 and Proposition 8.7. ]
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9. The critical value for the SLE

THEOREM 9.1: sup K < 4, where R is as in Definition 7.1.

Proof: Fix some k € £, and let f; be the solution of the Lowner equation with
parameter ((t) = B(—xt), where B: [0,00) — AU is Brownian motion starting
from a uniform point in JU. Note the for every ¢ < 0 the map f; ! is well defined
and injective on U — {{(0)}, since f; is a Riemann map onto a slit domain, and
the slit hits U at ¢(0). Set b(t) := —ilog f;1(1), with b(0) — B(0) € [0,2r) and
b(t) continuous in t. (A.s. {(0) # 1, and on this event b(t) is well defined for all
t < 0.) Then b(t) is real. As in (7.5), we have

sinB(-) =) _ 1g
1 - cos(B(—rt) - )~WJMt)w»

(9.1) b (t) =

Let p(s) = b(—s) — B(ks), and let € > 0. Set 7. = inf{s > 0: p(s) = €} and
1= = inf{s > 0: p(s) = n}. For z € [¢, 7], let gc(z) be the probability that
Tr < Te, conditioned on p(0) = z. Also set g.(z) = 0 for z < € and g.(z) =1 for
z > 7. We now show that g, satisfies

(9.2) 59/(2) + gl(z) cot(a/2) =

inside (e, ), using Itd’s formula. (The reader unfamiliar with stochastic calculus
can have a look at [Dur84], for example, or try to derive (9.2) directly. The latter
is a bit tricky, but can be done.) Observe that ge(p(s*)) is a martingale, where
s* = min{s, 7¢, 7 }. By (9.1), we have

dp(s) = —b/(—s)ds — dﬁ(ns) = cot(p(s)/2)ds — d§(ns),
and therefore, by Ité’s Formula (assuming, for the moment, that g, is C?),
dge (p(5)) = 9. (p(s)) (cot (p(5)/2) ds — dB(xs)) + (1/2)g! (p(s)) d (Blxs) )
= (cot(p(s)/2)9. (p(s)) + (/2)g{ (p(s) ) ds — g4 (p(s) dB(xs)

for s < min{7,7,}. Since g.(p(s*)) is a martingale, the ds term must vanish,
and so (9.2) holds inside (¢, 7). Consequently, in that range,

d.(a) = ce(sin(z/2)) ™",

where c. is some constant depending on €. Since g.(¢) = 0 and g.(7) = 1, we
have [ g!(z)dz = 1, which gives

ct= /w (sin(x/2))_4/" dz.
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We know that a.s. p(s) # 0 for all s, which is equivalent to lim¢_, g.(z) = 1 on
(0,7). This gives lime_o g.(z) = 0, that is, lim._,o cc = 0. Therefore, x < 4.

This completes the proof, except that we have not shown that g, is C? (there
should be a reference implying this, but we have not located one). To deal with
this, the above procedure is reversed. Define g, as the solution of (9.2) satisfying
ge(¢) = 0 and ¢.(1) = 1. Then the above application of 1t6’s Formula shows that
ge(p(s*)) is a martingale. By the Optional Sampling Theorem, this implies that
ge(z) is the probability that 7, < 7., conditioned on p(0) = z, and completes the
proof. ]

CONJECTURE 9.2: & =[0,4].

10. Properties of UST subsequential scaling limits in two dimensions

Before we go into the study of the UST scaling limit, let us remark that the
definition we have adopted for the scaling limit is by no means the only reasonable
one. There are several other reasonable variations, and choosing one is partly a
matter of convenience and taste.

We now recall some definitions. Again, we think of §Z? as a subset of the
sphere S§? = R? U {00}. Recall that 'T'g denotes the UST on §Z2, with the point
oo added, to make it compact. Given two points a,b € :I:a, aF#b wep = wg,b
denotes the unique path in 'T'g with endpoints a and b. For the case a = b, we set
wa,e = {a}. Let Ts be the collection of all triplets, (a,b,wq ), where a,b € Ts.
¥s will be called the paths ensemble of 'T'g. Let ¥ denote a random variable in
H(S? x S? x H(S?)) whose law is a weak subsequential limit of the law of T5 as
6 — 0. The trunk is defined by

(10.1) trunk = trunk(T) = | (w—{a,b}).
(a,bw)€ET

Let € € (0,1] and a,b € Ts. We define wa,b(€) as follows. Let a’ be the first
point along the path w, 3 (which is oriented from a to b) where d(a,a’) =€, and
let &’ be the last point along the path where d(b,b') = ¢, provided that such points
exist. If o’ and b’ exist, and o’ appears on the path before b', then let w, (€) be
the (closed) subarc of w, from a’ to ¥'; and otherwise set w, 5(€) = . Let Ts(e)
denote the set of all triplets (a, b, wa,b(e)) such that a,b € ?5 and wgp(€) # 0.
Note that if d(a,b) > 2¢, then w, 5(€) # 0. We define

trunks(e) := U{w: (a,b,w) € ‘Ig(e)}.
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Then trunks(e) is a compact subset of Ts, which we call the e-trunk of '/I\'é‘ By
compactness, for every € € (0,1] there is a subsequential scaling limit of the law
of trunks(e). By passing to a subsequence, if necessary, we assume that for all
n € N; := {1,2,...} the weak limit trunko(1/n) of trunks(1/n), as § — 0, exists.

Recall that the dual T of a spanning tree T C §Z? is the spanning subgraph
of the dual graph (6Z%)' := (§/2,6/2) + 6Z? containing all edges that do not
intersect edges in T'. If T is the UST on 6Z2, then Tt has the law of the UST
on (§72)1. (See, e.g., [BLPS98].) Let T} be Tt U {00}, where T is the UST on
872, trunk' and trunk:g(e) are defined for 'T'} as trunk and trunkg(¢) were defined
for 'IA'(;.

We may think of the random variables trunk, trunk!, trunko(1/n), and
trunkg(l/n) (n € Ni) as defined on the same probability space, by taking a
subsequential limit of the joint distribution of ¥, ’S}, (trunks(1/n): n € Ni),
and (trunk;(l /n): n € Ny ). Tt is immediate to verify that a.s.

trunk = U trunko(1/n),
neNy
and trunko(1/(n + 1)) D trunko(1/n) for n € N

We shall prove that trunk is a.s. a topological tree, in the sense of the following
definition.

Definition 10.1: Trees. An arc joining two points z,y in a metric space X is a
set J C X such that there is a homeomorphism ¢: [0,1] — J with ¢(0) = z and
¢(1) = y. A metric space X will be called a topological tree if it is uniquely
arcwise connected (that is, given z # y in X there is a unique arc in X joining z
and y) and locally arcwise connected (that is, whenever £ € U and U is an open
subset of X there is an open W C U with £ € W and W is arcwise connected).
A finite topological tree is a topological space which is homeomorphic to a
finite, connected, simply connected, 1-dimensional simplicial complex.

Note that a connected subset of a topological tree is a topological tree [Bow].

Although we shall not need this fact, it is instructive to note that a metric
space which is a topological tree is homeomorphic to an R-tree? [MO90] (see also
[MMOT?92], for a slightly less general but simpler proof).

The next theorem establishes a finiteness property of the e-trunks, which is the
first step in the proof of Theorem 1.6.

4 An R-tree is a metric space (T, d) such that for every two distinct points z,y € T
there is a unique isometry ¢ from [0, d(z, y)] onto a subset of T satisfying ¢(0) = =
and ¢(d(z,y)) =y
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THEOREM 10.2 (Finiteness): For every € > 0 there is a & > 0 with the following
property. Suppose that 0 < § < 5. Let V be a set of vertices of §Z2 such that
every point in S? is within distance 8 of some vertex in V. Let Q= Q5(17) be
the subtree of 'T'(s that is spanned by 17, that is, the minimal connected subset of
?5 containing V. Then with probability at least 1 — ¢ we have @ D trunks(e).

Proof: Fix some small § > 0, and suppose that § € (O,A). Let Vp := ‘7, and for
each j € Ny let V; be a set of vertices containing V;_; such that every vertex
of 6Z2 is within spherical distance §; := 2775 of some vertex in V;, and Vj is
a minimal set satisfying these properties. Note that the number of vertices in
V; — V;_1 is bounded by 0(1)5;2. Let Q; be the subtree of Ts spanned by V;.

We now estimate the probability that there is some component of @;4+1 — @;
whose diameter is large. Let v be some vertex in 6Z2, let Q(v, j) be the arc of Ts
that connects v to Q;, and let D(v, §,a) be the event the diameter of Q(v, j) is at
least ad;. By Wilson’s algorithm, we may obtain Q(v, j) by conditioning on Q;
and loop-erasing a simple random walk from v that stops when @), is hit. Every
vertex w € §Z? is within distance d; from a vertex in Q. Since Q; is connected
and has diameter at least 1, Lemma, 2.1 shows that there is a universal constant
Co > 0 so that the probability that a random walk from w gets to distance Cyd;
from w before hitting Q; is at most 1/2. Consequently, D(v, j, a) has probability
at most O(1)exp(—Cia), where C; > 0 is an absolute constant. We choose
aj = j2(logg)2/Cl. Since there are at most 0(1)5]._2 vertices in Vj.1 — Vj, we
find that the probability of

D:=U U D(v, j,a;)

J=1v€eEV;4
is bounded by
o0
0(1)57%Y " 2%exp(—;%(log 3)?),
i=1

which goes to zero as 5 0.

Let v € 6Z2. There is a sequence vy, vy, . . ., U, With v; € V; such that Q(v,1) C
U;=2 Q(vj,j —1), and the latter union is connected. If we are in the complement
of D, it follows that the diameter of Q(v,1) is at most s := 3732, a;d;. Since
s — 0 as §g — 0, this establishes the theorem. |

Several corollaries follow from this theorem.
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COROLLARY 10.3: For each n € N, , a.s. trunkg(1/n) is a finite topological tree.

Proof: Let W C R? be finite. For each w € W and § > 0, let ws € 6Z2 be closest
to w, with ties broken arbitrarily, and set W5 = {ws: w € W}. Let Qs(W) be the
subtree of Ts spanned by W;. The theorem shows that we may choose a finite
W C R? such that trunks(1/n) C Qs(W) with probability at least 1—e, for every
sufficiently small § > 0. Consequently, we may couple a subsequential scaling
limit Q(W) of Qs(W) as § — 0 so that trunke(1l/n) C Q(W) with probability
at least 1 — e. Because trunko(1/n) is connected and € is an arbitrary positive
number, it suffices to prove that Q(W) is a.s. a finite tree. The latter is easily
proved by induction on |W| using Theorem 1.1, Wilson’s algorithm, and the
following easy fact: the tree spanned by a subset of the points in W is unlikely
to pass close by to the other points. (See Remark 3.2.) ]

COROLLARY 10.4: The Hausdorff dimension of trunk is in (1,2). Moreover, if
I = (s9, $1] is an interval such that a.s. the Hausdorff dimension of any scaling
limit of LERW is in I, then the Hausdorff dimension of trunk(¥) is in I.

Proof: The second statement follows immediately from Theorem 10.2. The first
is now a consequence of the result of [ABNW], showing that there are sg,s; €
(1,2) such that a.s. the Hausdorff dimension of LERW scaling limit is in [sg, 51].%
]

Remark 10.5: The above-mentioned lower bound in [ABNW] is based on the
ideas of [BJPP97]. Kenyon [Ken] can prove that we may take s; = 5/4. In
earlier work [Ken98b] he showed that n5/4 times the expected number of edges
in a LERW from (0,0) to the boundary of the square [~n,n]? tends to a finite
positive constant as n — oo. This supports the conjecture that the Hausdorff
dimension of the scaling limit of LERW is a.s. 5/4, and the same would apply to
trunk(T).

The degree of a point p in a topological tree T is the number of connected
components of T — {p}. The following corollary is a strong form of the statement
that the maximum degree of points in trunko(1/n) is 3. From this and the fact
that trunk is a tree (which we prove further below) it immediately follows that the

5 From Remark 3.2 follows the weaker result that the area measure of any subse-
quential scaling limit of LERW is zero, hence that the area of trunk is zero. It
is likely that with a bit more effort the proof of Remark 3.2 is sufficient for the
stronger claim that the Hausdorff dimension is smaller than 2.
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maximum degree in trunk is 3, because every finite subset of trunk is contained
in some trunko(1/n).

Given a point p € S* and two numbers 0 < r; < 12 < 1, let Agp(p,71,72)
denote the annulus with center p, inner radius r;, and outer radius ry, in the
spherical metric.

COROLLARY 10.6: Given every € € (0,1), there is anr € (0, €) with the following
property. For every sufficiently small § > 0, the probability that there is a
point p € S? such that there are 4 disjoint crossings in trunks(e) of the annulus
Asp(p,1,€) is at most €.

By having 4 disjoint crossings in trunks(€) of an annulus A, we mean that there
are 4 disjoint connected subsets of trunks(e) N A that intersect both boundary
components of A. Below, Corollary 10.11 gives a strengthening of Corollary
10.16.

Proof: By Theorem 10.2, it is enough to prove the statement with Qs(W)
replacing trunks(e), where W C R? is a set of bounded size, provided that the
value of r does not depend on 4. Again, induction on |W/| can be used together
with Wilson’s algorithm. One needs note the following easy facts. The tree Tj_;
spanned by k — 1 points of W is unlikely to pass close to the other points of W,
and when adding a further point, it is unlikely that the attachment point of the
new branch on Ty_; will be close to another branch point. Also, once a random
walk from the new point gets close to Tj—; it will hit Ti_; close by, with high
likelihood. The easy details are left to the reader. ]

We now turn to the central issue in the proof of Theorem 1.6, which is,

THEOREM 10.7: In any subsequential scaling limit of UST in S?, a.s. the trunk
and dual trunk do not intersect.

LEMMA 10.8: Givend,e > 0, let T3(€) be the set of points of degree 3 in trunks(e).
Let trunk}(e) be the e-trunk of the dual tree T':E Let D be the spherical distance
from T3 (e€) to trunk}(e), that is, the least spherical distance between a point in
T3(¢) to a point in trunk}(e). Then lim;_,o P[D < t] — 0 uniformly in é.

The following simple observation is used in the proof. Suppose that we condi-
tion on a set of edges S to appear in the UST tree in a planar graph. For the dual
tree, this is the same as deleting the edges dual to the edges in S. Consequently,
one can perform a variation on Wilson’s algorithm for a planar graph, where
one switches back and forth from building the tree by adding LERW branches
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and building the dual tree. When building the tree, the LERW acts with the
constructed tree as a wired absorbing boundary and the constructed dual tree as
a free boundary, and conversely when building the dual tree.

Proof: We first choose a large but finite collection of points Q in 6Z? so that
with high probability the subtree T of Ts spanned by @ contains trunks(€) (and
|Q| does not depend on §). This can be done, by Theorem 10.2. Let Q' be a set
of vertices of the dual graph (§Z?)', such that with high probability the subtree
Tt spanned by Q' in the dual graph contains trunk}(e). Let a1,a2,a3 € @ and
a{, ag € Q' be distinct points. It suffices to show that the probability that the arc
B joining a){ and a; in Tt comes within distance t of the meeting point m of a;, az
and a3 in T goes to zero as t — 0, uniformly in §. This is easy. We condition
on the subtree Ty of T spanned by a1, a2,a3. Let 2! be a dual vertex close to aI.
Then with high probability the dual tree path g from 2t to aJ{ has diameter not
much larger than the distance from 2! to a‘;. In particular, it does not go close to
Ty. By the next lemma, conditioned on 8 and Tj, the probability that a simple
random walk starting at ag, with T acting as a reflecting boundary, will get to
within distance ¢ of m before hitting 3 tends to zero with ¢. Consequently, the
same is true for the loop-erasure of this walk, which can be taken as the path

joining £ and az in the dual tree. |

A simple random walk on 672 is likely to hit a connected subgraph of fixed
diameter> 0 before visiting a specified vertex at fixed positive distance away.
The next lemma gives a uniform version of this statement, in a slightly more
general setting, where there is also a reflecting boundary.

LEMMA 10.9: Let D be a domain in S* such that S* — D has two connected com-
ponents, By, By, and assume that neither is a single point. Consider a sequence
d;, 7 € N, of positive numbers tending to zero. Suppose that to each j € N there
are two connected subgraphs B{,Bg of the grid 6;Z%, and that B{ — By and
Bg — B, in the Hausdorff metric on compact subsets of S*>. Let m € By be some
point, and for each t > 0 and z € §;7* - Bg, let hj(z,t) be the probability that
simple random walk on §;7* — B{ starting at z (with reflecting boundary condi-
tions on Bj) will get to within distance t of m before hitting Bl. Let K CS*~B,
be compact. Then

11_1}(} sup{hj(z,t): z€ KN éjZ2} =0.
Proof: Set G; := 8;7% — B}, let S(t) be the vertices of G that are within
distance ¢ from m, and let V;(t) be the set of vertices of G; — B — S(t). Then
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hj(z,t) is discrete-harmonic in Vj(t). Recall that the Dirichlet energy of h;(z,t)
is 3 (hi(z,t) — hj(z’,t))z, with the sum extending over all edges [2,2'] in G;.
Let A = ); be the minimum of h;(z,t) on K, and let z be where the minimum is
achieved. Then there is a path 8 from z to S(t) such that h;(z,t) > X on 3, by
the maximum principle for discrete harmonic functions. Note that one can find
a collection of at least 1/(cd;) disjoint paths in G; which join B! and 8 and each
path in the collection has combinatorial length bounded by ¢/é;, where ¢ < oo
depends only on K and D. The Dirichlet energy of h;(z,t) restricted to each
such path is at least A\/d; times a positive constant, and therefore the Dirichlet
energy of h;(z,t) is at least CA, where C > 0 is a constant depending only on K
and D.

Let d; be the distance from m to BJ. Since h;j(z,t) is harmonic in V;(2), it
minimizes the Dirichlet energy among functions on G; that are 1 on S(t) and 0
on B{. Therefore, the Dirichlet energy of h;(z,t) is at most the Dirichlet energy
of the function f: G; — R, which is 1 on S(t), 0 outside of S(d;), and equal to
log(d;/|z — m|)/log(d;/t) elsewhere, which is O(1)/log(d;/t), as j — oco. This
gives, A; = O(1)/log(d;/t), and the lemma follows. |

Proof of Theorem 10.7: Before we go into the actual details, the overall plan
of the proof will be given (in a somewhat imprecise manner). Let t5 > 0. It
is not hard to reduce the theorem to the claim that with probability close to
1 the path v C ?5 which joins two fixed points a1,a; does not have points p
close to it such that the path a, C 'Al'g joining p to v is not contained in a small
neighborhood of . Let Z be the set of points p such that a, does not stay close
to 7. When we condition on v, the probability that p € Z goes to zero as p tends
to a point in v, by a simple harmonic measure estimate. However, this is not
enough, since there are many different p’s close to . We fix some collection L; of
points close to 7, and take a thick collection of points Ly which are much closer
to v. What we show is that conditioned on v and on Z N Ly # 0, the expectation
of N :=|Z N L] is much larger than E[N | 7]. This is established by observing
that when p € Ly N Z is appropriately chosen, the expected number of points
p' € Ly such that oy is contained in ay, except for a small initial segment of oy,
is quite large. It follows that
E[N | 1]

E[N |v, ZN Ly #0]
is small, which suffices to prove the theorem.

We now give the details. Fix four distinct points ay,a,b;,bs € R%. Given
§ > 0, let a} and a}, be points of §Z2 that are closest to a; and ay, respectively,

PZNL: #0|4] <
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and let b} and b} be vertices of the grid dual to 6Z? that are closest to b; and
b, respectively. Let v be the path in Ts that joins @} and af, and given any
p € 672, let o, denote the path in Ts from p to 7. Let § be the path of :l::g that
joins b} and b5.

Since trunk = |J,, trunko(1/n), and trunk! = Un trunka(l/n), Theorem 10.2
shows that it suffices to prove that the probability that the distance between ¥
and J is less than t goes to zero, as t goes down to zero, uniformly in §. We
know that with probability close to one,  does not come close to {a;, a2}, and
does not come close to {b;,b2} (Remark 3.2). Therefore, we need only consider
the situation where there is a point ¢ on v, which is close to 3, but not close
to {a1,az2,b1,b2}. Since B and 7 cannot cross, and since § locally separates the
sphere near every point of 8 — {b},b,}, such a situation implies that there is a
point ¢’ in 6Z?, which is near g, but in order to get to  from ¢’ one must either
cross (3, or go “around” it. Consequently, diam (a4 ) must be bounded away from
zero, as o cannot cross (3. It therefore suffices to rule out the existence of a
point ¢’ € 6Z? close to y but with diam (@) bounded away from zero. More
precisely, let K be a compact set disjoint from {a1,az}, and let €; € (0,1). Let h
be the least distance from 7 to some point ¢’ € KN4§Z? such that diam (ay) > €.
It suffices to show that

(10.2) inf limsupP[h < ho] = 0.

ho>0 550
Given any p € §Z?, let h(p) be the distance from p to v and let k(p) be the
maximal distance from a point on a5 to y. By Corollary 10.6, the probability
that there is an arc @ in T, which is disjoint from +, satisfies diam{c) > €1, and
every point of « is within distance ¢ of ~, goes to zero as t — 0, uniformly in 4.
Hence, to prove (10.2), it suffices to establish that

(10.3) Vt>0 inf limsupP[3p € K N6Z? h(p) < ho, k(p) >t] = 0.
ho>0 530

Since the proof is somewhat involved, we consider first the simpler situation in
which

(10.4) v=0,1] x {0}, and K = [1/3,2/3] x [0, 1)

(notwithstanding that this is an unrealistic situation, of extremely low probabil-
ity). Obviously, it suffices to prove (10.3) for small ¢ > 0.

In the following arguments, several small positive quantities appear. Their
dependence differs from the natural flow of the proof. In order to make it clear
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that the proof is logically sound, we state now that the dependence order is as
follows:
60,t0,7‘0,t1,h1,7‘1,h2,6;

that is, each of these quantities may depend only on those appearing before it in
the list, and should be thought of as much smaller than its predecessors.
Set h} := max{kd: k € Z, ké < hy}, and let

Ly = {(ké,h}): k€ Z, 1/6 <kd <5/6}.

Given v and p € §Z?, we may choose a, by loop-erasing a simple random walk
from p to y. Consequently, an easy harmonic measure estimate shows that
Plk(p) > t] = O(hy/t) for all p € L;.

Set hf := max{ké: k € Z, ké < hy}, and

Ly := {(k8,hy): k € Z, 1/4 < k6 < 3/4}.

Again, for all p € Lq, Plk(p) 2 to] = O(ha/to), so we may assume that the
event Q that the leftmost point in L, satisfies k(p) < t; has probability at least
1 — ¢y. Let K be the event that there is some p € Ly with k(p) > to, and let
K' := KN Q. For proving (10.3) in the simpler situation (10.4), it suffices to show
that P[K'] = O(ep) for all sufficiently small § > 0.

Consider the following procedure for generating ?5 given 7. Perform Wilson’s
algorithm starting with the vertices in Ly, in left-to-right order. If we encounter
in this procedure some vertex p € Ly such that k(p) > to, we stop, and let po
denote that vertex. Let Ty be the tree constructed up to that point (including
Qp,)- On the event K/, let p; be the first point on o, whose distance to -y is at
least ¢y, and let a be the arc of a,, from pg to p;. Let A; be the event that « is
not contained in the rectangle [1/5,4/5] x [0, to). Note that A; implies that there
is an arc in a N ([1/5,4/5] x [0,tp]) with diameter at least 1/15. By considering
this arc and 7, Corollary 10.6 shows that P[A; N K’} < €, assuming that tq is
sufficiently small.

On the event X' — A4, let

1 = max{z € R: (z,h1/2) € o},

let U be the component of R? — (a U ([z1,00) x {h1/2}) U (R x {tl})) that
contains (z1,00) X {h1/2}, and let U’ be the set of points in U that are within
distance t; from o. See Figure 10.1. Let A; be the event that X' — A; occurs
and U’ intersects Tp.
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---------------------------------------------------------------- t
!
------------------------------------------- hi/2
To
PV , :
I
Figure 10.1.

We now prove that P[KC — A; — A;] = O(ep). Let N be the number of points
p € Ly such that k(p) > to. For a given p € Ly, the probability of k(p) > tg
(given (10.4), but otherwise unconditioned) is O(hy/tg). Therefore,

(10.5) E[N] < O(1)hy/(éto).

On the other hand, condition on the event K’ — A; — A; and on Ty. Let L] be the
set of p € Ly NU such that the distance from p to « is at most ¢,/2. Note that

conditioned on p € L}, the probability that c, joins with ay,, within distance 2¢;
from p is at least

h

(10.6) o dist(p, ) £ Fr’

since after generating Tp, we may continue by running Wilson’s algorithm starting
at p, and the probability that the random walk starting at p will hit o before the

ray (x1,00) x {hy1/2} is at least (10.6). It therefore follows that conditioned on
K —A; — Ay, we have

E[N | K — A1 — A2 2 0()™1 > {h1/(kd): k € Z, hy < kb < t1/2}
2 O(l)_15_1h1 log(tl/(2h1))
Combining this with (10.5) gives

PK—-A; - Ag] < B[V | KEENAI .Az] o1 )(to log(tl/(2h1))) < €o,
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provided that h; is sufficiently small.

It remains to establish that P[A42] < O(eg). First consider the case that there
is some p € Lo, to the left of pg, such that a, NU # 0. Then this must be the
case for p being the left neighbor of pg, namely p = pj := po — (4,0), because
when p € Ly is to the left of pj, the path a;, cannot cross ap, U [po,ph] U gt s
and o, does not get to R x {to}. If oy intersects U, then oy must first get to
some point z in [z1,00) X {hy/2}. Near z there must be two points z{ , z;, which
are vertices of the dual grid (6Z2)T, and are locally separated from each other by
Op,- The path in the dual tree that joins zI and z; has to contain the edge dual
to the edge [py, po]. Now consider another dual vertex z; just left of a near the
point (x1,h1/2). Let m! be the meeting point of zI, z; and z; in the dual tree.
If m! is not within distance r; of py, we get in the r;/10 trunk of the dual tree
at least four disjoint crossings of the annulus A(pg,2hs,71/2). We may assume
that this has probability < €, by Corollary 10.6. Similarly, Lemma 10.8, with
the role of the tree and dual tree reversed, shows that we may take the event
that m' is within distance r, of py to have probability < €, provided that 7, is
sufficiently small when compared with h;.

To establish that P[A3] < O(eg), it now suffices to prove that on the event
K’ — Ay, the probability that a,, intersects U’ is O(eg). The argument is similar
here, but occurs on a larger scale. Suppose that w € ap, NU’. Then w must be
on the segment of o, from p; to the point p, in o, Ny. Because w € a,,, —a and
w is within distance ¢; to o, there is a point near w that is in the (ty/2)-trunk
of the dual tree, namely, some point on the path connecting dual two vertices
on opposite sides of oy, near p;. Consequently, by Lemma 10.8, we may rule
out the possibility that p, is within distance ro of w as having small probability,
since pj is a point of degree 3 of the (¢g/2)-trunk. But if the distance between po
and w is more than ry, then there are in the (tp/2)-trunk at least four disjoint
crossings of the annulus A(w,2t;,79): two on ap, and two on . An appeal to
Corollary 10.6 now establishes P[42] < O(¢g). This completes the proof in the
situation (10.4).

We now explain how to modify the above proof to deal with the general case.
First note that the restriction on K is entirely inconsequential; we could in the
same way deal with any compact set disjoint from the endpoints of 4. More
significant is the special selection of . Observe that under the assumption of
conformal invariance of the LERW scaling limit, the general case can be reduced
to the case where v = [0,1] x {0}, because after -y is generated, the rest of the
UST is just unconditioned UST on the complement of v with wired boundary
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conditions. We may then transform v by a conformal homeomorphism to
[0,1] x {0}, and refer to the above result.

Although we do not assume conformal invariance of the scaling limit, it turns
out that the proof above is itself conformally invariant. With some care, one can
apply the conformal map to the proof, in a manner of speaking. This is actually
not very surprising, because the proof is ultimately based on a simple (discrete)
harmonic measure estimate, which is conformally invariant.

Let us turn to the details. We may couple the UST for a subsequence of §
tending to zero so that - tends to some path vy as § — 0 along that subsequence
(see the discussion of the Prohorov metric in Section 2). Let

f5: 8% = ([0,1] x {0}) = 8% —

be the conformal map normalized to take the endpoints of [0,1] x {0} to the
endpoints of y and so that fs(co) is on the line which is the set of points at equal
distance from both endpoints of v, say. (The latter normalization is necessary
to make fs5 unique, but otherwise, it is quite arbitrary.) It follows that f5 tends
to the similarly normalized conformal map f: §2 — ([0,1] x {0}) — §? — 7o. We
may assume that § is so small that f and f5 are very close on compact subsets
disjoint from [0, 1] x {0}.

For each p € Ly, where L, is as before, we let p denote a point in §Z? that
is closest to f(p). For the general case, we consider N , the number of p € L,
such that k(p) is not small, in place of N. Let L, denote the set of points in §Z2
that are within distance 36 of f([1/4,3/4] x {h2}). The proof for the general
case uses Zg in place of Ly. For traversing El, there is no clear notion of the
left-right order. But any ordering that starts near f((1/4,h2)), and later does
not visit any vertex before visiting an immediate neighbor, will do. Instead of
the left neighbor pj of a vertex py € Ly, we use for py € L, that neighbor of
Do in fq that is “most counterclockwise”, in the appropriate sense. The rest of
the proof proceeds with essentially no modifications, except that the coordinate
system used is transformed by f. |

Remark 10.10: In [BLPS98] it has been asked whether the free USF on every
planar proper bounded degree graph is a tree. The proof of Theorem 10.7 seems
to be relevant. It is plausible that with a similar argument one can prove that
for proper planar graphs with bounded degree and a bounded number of sides
per face, the free USF is a tree.

We may now strengthen Corollary 10.6, as follows
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COROLLARY 10.11: Given every € € (0,1), there is an r € (0,¢) with the
following property. For every sufficiently small § > 0, the probability that there
is a point p € S? such that there are 4 disjoint crossings in Ts of the annulus
Agp(p, T, €) is at most €.

Proof: Consider an annulus A = Agp(p,7,€), and suppose that there are four
disjoint paths ag,a1,a2,qas in ?5 that cross it. Let Bj be the component of
$? — A inside the inner boundary component of A, and let B, be the outside
component. Without loss of generality, we suppose that ag U oy separate a;
from a3 inside A, that is, the circular order of these paths around A agrees with
the order of the indices.

Assume first that there are no paths in 'T'g N A that join two of the paths a;,
7 =0,1,2,3. Then there must be paths in the dual tree &y, 81, 82,33, such that
B; is between a;_; and o; (indices mod 4), for each j = 0,1,2,3. If ag, 1,2
and a3 can all be connected to each other by paths in AU By, it follows that there
are four crossings of the annulus Agp (p,r,€/3) in the €/3 trunk of Ts, and we
know that has small probability to happen anywhere, if r is small, by Corollary
10.6. If neither of the paths &; connects to another in AU By, the same argument
applies to the dual tree, because the paths 8; must all connect inside A U B;.
However, if two of the paths o; connect in AU By, and one of the others does
not connect to them, then also two of the paths §; connect. This implies that
the €/3 trunk gets within distance of r from the dual trunk, and again this can
be discarded as having small likelihood.

We are left to deal with the situation where there is a simple path v in AN ?5
that connects two of the paths a;. Note that for each pair of paths o; there can
be at most one such vy connecting them. Also note that any path connecting a;
and aj42 (indices mod 4) must cross either a1 or ojy3. Consequently, if we
consider any four concentric annuli A; := Asp(p,7;,7541), § = 0,1,2,3,4, with
T; < 141 for each j = 0,1,2,3,4, 7o = r, and r5 = ¢, at least one of them will
have the property that inside it there is no path joining any two paths among
the a;’s. This allows a reduction to the previous case, and completes the proof.
[ |

THEOREM 10.12: A.s., every simple path ¢: [0,1) — trunk has a limit lim;_,; ¢(2)
in S?, and for every point z € §? there is a simple path ¢: [0,1) — trunk such
that lim;_,; ¢(t) = 2.

Proof: Suppose that there are two distinct accumulation points, z and y, of
#(t) as t — 1, and let m € N, satisfy dgp(z,y) > 9/m. Then for each ¢t € (0,1)
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the (spherical) diameter of ¢([t,1)) is greater than 9/m. Let a € (0,1) be such
that the diameter of ¢([0,a]) is at least 5/m. It easily follows that ¢([a,1)) C
trunkg(1/m). But since trunko(1/m) is a compact finite tree (Corollary 10.3), and
the restriction of ¢ to [a,1) is in trunkg(1/m), it follows that lim; ,; ¢(t) exists.
Contradiction.

Let z € §? and 2’ € trunkg(1), 2/ # 2. We want to produce a simple path
v C trunk starting at 2’ and tending to z. If z € trunk, then z € trunko(1l/n)
for some n € N, and the existence of v is clear. So suppose that z ¢ trunk.
For each n € N,, there is a point 2, € trunkg(l/n) which is within distance
2/n from z. Let B, be the arc from 2z’ to z, in trunke(1/n). For each n and
m, the intersection ~y, N trunkg(1/m) is a simple path. Since trunke(1/m) is a
compact finite topological tree, there is a subsequence v,, such that for each m
the Hausdorff limit lim; (v, Ntrunkg(1/m)) exists, and is a simple path. Because
Yn — B(z,3/m) C trunkg(1/m) when n > m, it now follows that v := lim; vy, is
a simple path. Moreover, it is clear that z € v and v — {2} C trunk. |

Proof of Theorem 1.6: 'We first prove that trunk is a topological tree. Clearly, the
trunk is arcwise connected, since trunk := |, trunkg(1/n), and each trunkg(1/n)
is arcwise connected. It is also clear that the trunk is dense in §?. Let z,y € trunk.
Then there is some n € N such that z,y € trunko(1/n), and there is a unique
arc v, joining z and y in trunkg(1/n). Let v, be an arc joining z and y in trunk.
Since the dual trunk is dense, it must intersect all connected components of
$? — (11 Uy2). Since the dual trunk is disjoint from the trunk, it does not intersect
41 U72. Because the dual trunk is connected, it now follows that S? — (y; Uys) is
connected. Consequently, y1 = 72, and the trunk is uniquely arcwise connected.

Let n € N and let ¢t be the spherical distance between trunko(1/n) and
trunkg(l/n). Since these are compact and disjoint, t > 0. If z € trunke(1/n) and
there is a y € trunk such that there is no path in trunk N B(z,3/n)
joining = and y, then there must be a path in trunkg(l/n) separating z and
y in B(z,1/n). (Indeed, if v is the path joining = and y and p € v — B(z,3/n),
then the path 8 C trunk' connecting two points p’ and p” that are near p and
are separated from each other by 4 near p, will have a subarc in trunk};(l /n)
separating z and y in B(z,1/n).) Consequently, for every point x € trunko(1/n)
and every y € trunk N B(z,t) N B(z,1/n) there is a path in trunk N B(z, 3/n)
joining z and y. Hence, the union of all arcs that contain 2 and are contained
in trunk N B(z,3/n) is an arcwise connected subset of trunk N B(z,3/n) which
contains trunk N B(z,t) N B(z,1/n). This implies that trunk is locally arcwise
connected, and so it is a topological tree. It is obviously dense in §?, and the
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proof of part (iii) is complete.

It is clear that for every a,b € §? there is some w such that (a,b,w) € <.

Let T(e) be a subsequential scaling limit of ¥5(¢). We prove that a.s. every
w such that (a,b,w) € %(¢) for some a,b € S? is a simple path. Let ¢; > 0. It
suffices to prove that the above statement holds with probability at least 1 — ¢;.
Let Vi C §? be a finite set of points, and for each § > 0 let V{ be a collection of
vertices of 672, each close to one point of V;, and with |V;| = |V#|. By Theorem
10.2, V; may be chosen so that with probability at least 1 — €; the subtree of 'T'g
spanned by V) contains trunks(e), for all sufficiently small 6. This implies that
each w, p(€) is a subarc of w,, for some v,u € V. Because for every pair of
points v,u € V; the scaling limit of the LERW from v to v is a simple path, it
follows that with probability at least 1 —¢; for each (a,b,w) € F(€), w is a simple
path.

We may now conclude that a.s. for every (a,b,w) € T, the set

w— (B(a,€) U B(b,¢))

is a 1-manifold, that is, a disjoint union of simple paths. Therefore, ' :=
w — {a,b} is a l-manifold. This means that each component of ' is an arc
with endpoints in {a, b}. It is clear that w may be oriented as a path from a to b.
Suppose that w visits ¢ more than once. If a # b, it then follows that a € trunk,
and there is a simple closed path in trunk containing a. This is impossible, since
trunk is a topological tree. Hence a, and similarly b, are each visited only once in
w, which implies that w is a simple path if a # b. If a = b, the only possibility is
that w = {a} or that w is a simple closed path. This proves the first and second
statements in (ii).

Observe that if there is simple curve & C trunk such that @ = a U {a}, then
a must be in the dual trunk, for the dual trunk is connected, intersects both
components of §? — &, and is disjoint from trunk. This is a rare event, by Remark
3.2 (or Corollary 10.4). This proves (ii).

Corollary 10.11 proves (iv).

The first claim in (i) is obvious. Suppose that @ # b are such that there are
two sets w and w’ with (a,b,w), (a,b,w’) € T. We know that w and ' are simple
paths. If w # ', then there is a simple closed path, say +, contained in WU w'.
But as above, v must intersect the dual trunk, since the dual trunk is connected
and dense. This implies that a or b are in the dual trunk. This completes the
proof of (i), and of the theorem. ]



280 O. SCHRAMM Isr. J. Math.

Remark 10.13: Uniqueness of paths. We have seen in the above proof that the
path in trunk from a to b is unique when {a, b} Ntrunk! = 0. The converse is also
easily established.

Remark 10.14 (Reconstructing trunk'): It can be shown that the scaling limit
dual trunk can be reconstructed from the trunk. This can be seen from Remark
10.13. Another description of the dual trunk from the trunk is as follows. Given
distinct z,y € S? — trunk, let y(z,y) be the (unique) arc in S — trunk with
endpoints z,y. Then

trunk’ = U{’y(:t, y)~{z,y}:z £ y,z,yeS® — trunk}.

To prove this, it suffices to establish that +(z,y) is unique, which follows from
the fact that trunk is connected and dense.

Remark 10.15: Consider the metric d* on trunk, where d*(z,y) is the spherical
diameter of the unique (possibly degenerate) arc joining z and y in trunk. Since
trunk is locally arcwise connected, this new metric on trunk is compatible with
the topology of trunk as a subset of S?. Let trunk, denote the completion of this
metric. Then trunk, is a compact topological tree, and is naturally homeomorphic
with the ends compactification of trunk. Since d* majorizes the spherical metric,
there is a natural projection m: trunk, — S%, whose restriction to trunk is the
identity. It is easy to see that every point p € §? — trunk' has a unique preimage
under 7, and for points p € trunk', the degree of p in trunk' is equal to |71 (p)|.
Consider some o € S?, and let T° be the appropriate “slice” of ¥, that is,
7° := {(bw): (0,b,w) € T}. One can show that if o ¢ trunk’, then %° is
homeomorphic with trunk,, and #: €° — §? is the projection onto the first
coordinate, when ¥° is identified with trunk, through this homeomorphism.

11. Free and wired trunks and conformal invariance

We now want to give a precise formulation to a conformal invariance conjec-
ture for the UST scaling limit, and prove that it follows from the conjectured
conformal invariance of the LERW scaling limit. (Such conformal invariance
conjectures seem to be floating in the air these days, with roots in the physics
community.) The conformal automorphisms of S? are Mobius transformations.
We conjecture that the different notions of scaling limits of UST in S?, which
were introduced in the previous section, exist (without a need to pass to a subse-
quence) and are invariant under M6bius transformations. Moreover, the scaling
limits in subdomains D C S? should be invariant under conformal homeomor-
phisms f: D — D’ c $?. This is a significantly stronger statement, since the
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Mobius transformations of S? form a 6-dimensional group, while the space of
conformal homeomorphisms from the unit disk onto subdomains of $? is infinite
dimensional.

To formulate more precisely the invariance under conformal homeomorphisms
of subdomains f: D — D', we need first to discuss UST scaling limits in subdo-
mains of S?. This will be now explained.

For simplicity, we restrict our attention to simply connected domains D g R?
whose boundary 0D is a simple closed path. Let pg € D be some basepoint. Let
FTZ be the uniform spanning tree of G(D, ), with free boundary conditions, and
let WT{ be the uniform spanning tree of G(D, §) with wired boundary conditions.
Let S%, be the metric space obtained from S? by contracting $? — D to a single
point. Then we may think of WT# as a random point in #(S%), which is a.s. a
tree. The tree FTf;J may be thought of as a random point in H(D), which is a.s.
a tree.

Let 20%5 := T(WTP) and 32 := T(FTP), that is, the wired paths ensem-
ble 20%s is defined from the wired tree WTy in exactly the same way that the
ordinary paths ensemble 5 was defined from ?5, and similarly for §¥5. Note
that 20Ts € H(S} x S4 x H(S})) and FT; € H(D x D x H(D)). Also the
definitions of the scaling limits and the trunk are the same as in the previous
section.

THEOREM 11.1: Let D C R? be a domain whose boundary is a C'-smooth
simple closed curve.
(i) Theorem 10.2, with S? replaced by D, holds for the free and wired spanning
trees in D.
(i) The free scaling limit trunk in D is disjoint from 0D, in every (subsequen-
tial) scaling limit.
(iii) The free scaling limit trunk in D is disjoint from the scaling limit trunk of
the dual tree (which is wired), in every (subsequential) scaling limit.

There are simply connected domains where 8D is not a simple closed curve
and (ii) fails: the domain (0,2) x (0,2) — Uo—,(0,1] x {1/n} is an example.
LEMMA 11.2: There is an absolute constant C > 0 such that the following holds
true. Let D be as in Theorem 11.1. Then there is a 6o = do(D) > 0 with the
following property. Suppose that § and §; are numbers satisfying 0 < § < 61 < do
and A is a connected subgraph of G(D,$) with diameter at least 0,. Further
suppose that p € V(G(D,6)) has distance 6, to A. Then the probability that
a random walk on G(D, ) starting at p will get to distance Cé, from p before
hitting A is less than 1/2.
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Proof: The proof is similar to the proof of Lemma 10.9. Let Z = Z(t) be the
set of vertices with distance at least ¢ from p, where we take t > 46;. Let A’
be a component of AN B(p,3d1) containing some point at distance d; to p and
having diameter at least 6;. For v € V(G(D, 6)), let h(v) be the probability that
a random walk starting from v will reach Z before hitting A’. Then h is discrete-
harmonic, and minimizes Dirichlet energy among functions that are 1 on Z and 0
on A’. As in the proof of Lemma 10.9, it follows that the Dirichlet energy of h is at
most O(1)/log(t/8:1). Let B be the set of vertices v at distance at most 26; from
p such that h(v) > h(p), and let B’ be the component of B containing p. Note
that the diameter of B’ is at least d;, as B’ must neighbor with some vertex with
distance 24; from p, by the maximum principle for h. As in the proof of Lemma,
10.9, it can be shown that when §; is sufficiently small (how small depends on
the scale in which dD appears smooth), one can find O(1)/§ disjoint paths in
6Z% N D connecting A’ to B', each of combinatorial length O(1)/5. Because h
is zero on A’ and at least h(p) on B’, it follows that the Dirichlet energy of h

is at least O(1)h(p). We conclude that h(p) < O(1)/log(t/d1), which proves the
lemma. ]

Proof of Theorem 11.1: The proof for (i) in the wired case is the same as the
proof of Theorem 10.2 (and we don’t need to assume anything about D). The
free case is the same, except that one needs to appeal to Lemma 11.2. Assuming
(ii), the proof of (iii) is identical to the proof of Theorem 10.7. The proof of (ii) is
also the same as the proof of 10.7, except that one needs to find the appropriate
substitutes for Lemma 10.8 and Corollary 10.6; namely, for every € > 0 there is
an €y > 0 such that for all § € (0,¢p) with probability at least 1 — € all points
of degree three in the e-trunk of FT5 have distance at least €y from 8D, and
the probability that there is a point p € 8D such that there are two disjoint
crossings of the annulus A(p, €9, €) in the e-trunk of WT? is at most e. The latter
statement follows from the proof of Corollary 10.6.

It remains to prove the appropriate substitute for 10.8. Consider three distinct
points in D, p1,ps,p3, and for § > 0 let p},ph,ps be a triple of points in §Z2
which is close to p1, pa, p3, respectively. Let m be the meeting point of p}, pj,p}
in FT?, and let B be any disk whose center is in 8D and which does not intersect
{P}, 05,3} Let B’ and B” be disks concentric with B of 1/2 and 1/4 of its size,
respectively. By part (i), it suffices to prove that with probability going to 1 as
€0 — 0 and § — 0, m is not within distance o from 8D N B”.

Suppose that m € B. Let 1, 2,73 be the arcs of FT# that join m to 71,72, P,
respectively, and let 7} be the largest initial segment of +; that is contained in B,
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j =1,2,3. There is a unique k € {1,2,3} such that U,z 7; separates -y from
0D in B. By symmetry, it suffices to estimate the probability that m is close
to BNAD and kK = 3. We generate m in the following way. Let v be a LERW
from p} to ph in §Z> N D. Let X be a random walk on §Z? N D starting at pj,
let 7., be the first time ¢ where X (t) € +, and let 71 be the first time ¢ when X (¢)
is incident with an edge intersecting 9D N B’. Then we may take m = X (7).
Consider the event A where m € B, k = 3 and 7y > 7,. With high probability,
the points X(t), t < 71, which are close to B'NdD, are also close to X (7). This
is just a property of simple random walk absorbed at B’N3D. Consequently, on
A, with high probability, if m is close to B N 9D, then -y passes close to X (7).
Since the probability that « passes near any point, which is not too close to p}
and ph, is small (Remark 3.2 applies here), and X (r1) is independent of vy, we
see that A has arbitrarily small probability.

We now need to consider the case k = 3 and 7, < 7,. Let 7{ be the first t > 7
such that X (t) ¢ B, and let 73 be the first ¢t > 7| such that X (¢) is incident with
an edge intersecting 8D N B’. Inductively, let 7/, be the first ¢ > 7, such that
X(t) ¢ B and let 7,41 be the first ¢ > 7, such that X(t) is incident with an
edge intersecting 8D N B’. Note that if k = 3 and 7, > 71, then 7., > 7{, for the
random walk X must go around 4] U4 before hitting . Similarly, if £ = 3 and
Ty > T1, then 7, € (7, Tnq1) for some n € N. If we fix a finite k¥ € N, then the
same argument as above shows that with high probability, v does not pass close
to the set {X(,): n =1,2,...,k}. Because P[r < 4] — 0 as k — oo, uniformly
in 4, the required result follows. 1

Suppose that D and D’ are two domains in R? such that the boundaries
8D, 8D’ are simple closed paths in R2. Then there is a conformal homeomor-
phism f: D — D'. Moreover, f extends continuously to a homeomorphism of D
onto ﬁl, which we will also denote by f. It follows that f induces maps

fw: H(SH x SL, x H(SE)) = H(Sh x S3, x H(S})),
fr:H(D x D x H(D)) - H(D x D x H(D)).

THEOREM 11.3: Let D C R? be a domain whose boundary is a C'-smooth
simple closed path. Assuming Conjecture 1.2, the following is true.
(i) The free and the wired UST scaling limits, §%, 2%, in D exist. (That is,
they do not depend on the sequence of & tending to 0.)
(it) If f: D — D’ is a conformal homeomorphism between such domains, then
fw is measure preserving from the law of 2% in D to the law of 9% in
D', and similarly for free boundary conditions.
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Proof: The proof for wired boundary conditions follows from Wilson’s algorithm
and Theorem 11.1. The easy details are left to the reader.

For the free boundary conditions, observe that WTZ is dual to FTZ (on the
dual grid). Remark 10.14 is also valid in the present setting, and shows that the
free scaling limit trunk can be reconstructed from the wired scaling limit trunk. It
is easy to see that the free scaling limit §% can be reconstructed from the trunk.
Hence, conformal invariance of the wired UST implies conformal invariance of
the free. 1

12. Speculations about the Peano curve scaling limit

This section will discuss the Peano curve winding between the UST and its dual.
From here on, the discussion will be somewhat speculative, and we omit proofs,
not because the proofs are particularly hard, but because the paper is long enough
as it is, and it is not clear when another paper on this subject will be produced.

This Peano curve was briefly mentioned in [BLPS98]. Consider the set of points
05 ¢ R? which have the same Euclidean distance from Ts as from its dual TJr
It is easy to verify that 65 is a simple path in a square grid G p(§), of mesh §/2,
which visits all the vertices in that grid. Set 05 = 65 U {00}. Then 05 is a.s. a
simple closed path in S? passing through oo.

To consider the scaling limit of 55, it is no use to think of it as a set of
points in S?, because then the scaling limit will be all of S2. Rather, one needs to
parameterize 5,; in some way. One natural parameterization would be by the area
of its 6/2-neighborhood, but there are several other plausible parameterizations.
Another, more sophisticated approach, would be to think of 55 as defining a
circular order on the set 5. The circular order R; is a closed subset of (S?)4,
and (a,b,c,d) € Rs iff a,b,¢,d € 85 and {a,c} separates b from d on 8s. Then
the (subsequential) scaling limit of 65 may be taken as the weak limit of the law
of Rs in %((82)4)

Let 8 denote the Peano curve scaling limit, defined as a path, or as a circular
order, or some other reasonable definition. Here is what we believe to be a
description of 4, in terms of the scaling limit of the UST. Recall that in Remark
10.15, we have introduced a completion trunk, of the trunk, in the metric d*,
where the distance between any two points of trunk is the diameter of the arc
connecting them, and that 7: trunk, — S? is the natural projection. Consider the
joint distribution of trunk, and the dual trunk!, and let 7t denote the projection
wt: trunk! — S2. Let 6 be the set of points (p,q) € trunk, x trunk! such that
7p = wlq. Then § is a simple closed path, and the map § ~ S? defined by
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(p,q) — mp gives the scaling limit 6.

Fix some a,b € R?, a # b. Let w, be the path such that (a,b,w, ) € T (this
Wa,b 18 a.s. unique), and let wl‘b be such that (a, b, wl,b) € %1, Then w, and wlib
are a.s. simple paths. Let D; and D, be the two components of §? — (w, 5 le,b).
A.s. 00 € Dy U D4, and without loss of generality take oo € Dy. It is then clear
that the part of # which is between a,b and does not contain oo is Dy, and that
the part which does contain oo is D;. Suppose that we condition on wq b and
on wl‘b, and look at some point ¢ € Dy. We'd like to know the distribution of the
part of 6 between ¢ and a which does not include b, say. Recall that on a finite
planar graph, we may generate the UST and the dual UST by a modification of
Wilson’s algorithm, where at each step in which we start from a vertex in the
graph, the dual tree built up to that point acts as a free boundary component, and
the tree built up to that point acts as an absorbing wired boundary component,
and at steps in which we start from a dual vertex, the tree built up to that point
acts as a free boundary component, and the dual tree built up to that point
acts as an absorbing wired boundary component. Consequently, we let & be the
scaling limit of LERW on 6Z% — wlb starting at c¢ that stops when it hits w, .
Then we let af be the scaling limit of LERW on 6Z% — (U w, ) starting at ¢
that stops when it hits wfa, b. (Since ¢ € @, to define this requires taking a limit
as the starting point tends to ¢.) Then o U at separates D, into two regions, say
D} and DY, and if b ¢ _ﬁ;, then Dj is the part of 8 “separated” from b by {a,c}.

In the above construction, the domain Dy was considered with mixed boundary
conditions. One arc of 8D, — {a,b} was taken as wired, while the other was
free. The resulting Peano path scaling limit 6 is a path joining a and b in Dj.
From Conjecture 1.2 should follow a conformal invariance result for UST in such
domains with mixed boundary conditions. Therefore, having an understanding
of the law of the Peano curve for one triplet (D, a,b), where o and b are distinct
points in D, which is a simple closed curve, suffices for any other such triplet.
This suggests that we should take the simplest possible such configuration, that
is, D = H, the upper half plane, a = 0,b = 0o. Suppose that we then take a point
¢ € H and condition on the part of € between 0 and ¢ and separated from oco. The
effect of that on 0 in the remaining subdomain D, of H is all in the boundary 8D..
This is a kind of Markovian property for the Peano curve, similar to the property
given by Lemma 4.3. By taking the conformal map from D, to H, which fixes oo,
takes ¢ to 0, and is appropriately normalized at 0o, we may return to base one.
This suggests that, as we have claimed in the introduction, a representation of
the Peano curve scaling limit is similar to the SLE representation of the LERW
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from 0 to 80/ which we have introduced. The analogue of the Lowner differential
equation for this situation is (1.6). Due to the Markovian nature of the Peano
curve, the corresponding parameter ¢ in (1.6) should have the form ¢ = B(xt),
where B is Brownian motion on R starting at 0, and x is some constant. One

can, in fact, show that k = 8, by deriving an appropriate analogue of Cardy’s
[Car92] conjectured formula, using the representation (1.6) and the techniques of
Section 9. The details will appear elsewhere.
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